

131 Morse Street Foxborough, Massachusetts

Immediate Response Action Completion Report

Massachusetts Electric Company d/b/a National Grid

February 2022

Section 1	Introduction	
1.1	Introduction	1-1
1.2	Site Description	1-1
1.3	Release History	
1.4	Surrounding Resource Areas	1-2
1.5	Applicable Cleanup Standards	1-3
Section 2	Description of IRA Activities	
2.1	Initial Response Actions – October 4,	2-1
2.2	Oil Recovery	2-2
2.3	Surface Water Sampling	2-3
2.4	February 2021 Soil Excavation	2-3
2.5	Structural Stability Analysis	2-4
2.6	MODF Fingerprint and Petroleum Forensic Analysis	2-4
2.7	Sluiceway Investigation	2-5
2.8	Limited Subsurface Assessment	
2.9	Oil Absorbent Boom Removal	2-7
2.10	Management of Remediation Waste	2-8
Section 3	IRA Evaluation	
3.1	Critical Exposure Pathway Evaluation	3-1
3.2	Imminent Hazard Evaluation	3-1
3.3	Substantial Release Migration Evaluation	3-1
Section 4	IRA Completion Statement and On-Going Activ	vities
Section 5	Public Notification	

Table of Contents Tighe&Bond

Appendix A Site Figures

Figure 1 – Site Locus

Figure 2 – MassGIS Priority Resource Map

Figure 3 – Aerial Site Plan Figure 4 – Sluiceway Site Plan

Figure 5 - Site Plan

Figure 6 – Groundwater Elevation Map

Appendix B Laboratory Certificates of Analysis

Appendix C Analytical Data Tables

Table 1 - Soil Analytical Results

Table 2 – Groundwater Analytical Results
Table 3 – Surface Water Analytical Results

Appendix D Soil Boring Logs Appendix E Photographic Log

Appendix F Uniform Hazardous Waste Manifests

Appendix G Subsurface Limitations
Appendix H Public Notification Letters

Section 1 Introduction

1.1 Introduction

Tighe & Bond has prepared this Immediate Response Action (IRA) Completion Report on behalf of Massachusetts Electric Company d/b/a National Grid (MEC). This IRA Completion Report documents activities conducted in response to a sudden release of approximately 100 to 130 gallons of non-polychlorinated biphenyl (non-PCB) mineral oil dielectric fluid (MODF) from a pad-mounted transformer as a result of a fire at 131 Morse Street in Foxborough, Massachusetts (the Site). The Disposal Site is identified by the Massachusetts Department of Environmental Protection (MassDEP) with Release Tracking Number (RTN) 4-28528. This IRA Completion Report has been prepared in accordance with the Massachusetts Contingency Plan (MCP) requirements contained in 310 CMR 40.0427.

Tighe & Bond has prepared this IRA Completion Report on behalf of:

Deborah Blanch Massachusetts Electric Company 19 Phillips Lane Hanover, Massachusetts 02339 508-897-5520

The Licensed Site Professional (LSP) of record for this Site is:

John Harvey (LSP #2002) Tighe & Bond One University Avenue, Suite 100 Westwood, Massachusetts 02090 781-375-2572

1.2 Site Description

The property on which the release occurred is an approximate 1.19-acre parcel identified as 131 Morse Street in Foxborough, Massachusetts. According to the Foxborough Board of Assessors, the property is identified as Lot 007 on Map 149 and is owned by CJW LLC. The property contains a mill building that was provided electricity via the damaged padmounted transformer and is located in the central portion of a mill complex, collectively known as 131 Morse Street. The Disposal Site is located in a commercial/industrial area of Foxborough. Commercial and industrial properties surround the Disposal Site property to the east, south, and west. The parcel to the north is currently vacant land.

The 131 Morse Street property is also located within the boundaries of another Disposal Site associated with RTN 4-255. This RTN (RTN 4-225) is associated with a release of hydraulic oil, No. 2 fuel oil and No. 6 fuel oil. MassDEP issued a Notice of Noncompliance for RTN 4-255 on May 1, 2019. No response action submittals have been filed with MassDEP since the NON was issued.

The Site Locus, attached as Figure 1 in Appendix A, identifies the Site on the Mansfield Massachusetts Quadrangle map, revised by the USGS in 1987. According to topographic contours shown on Figure 1, the Site is located at an elevation of approximately 177 feet (54 meters) above MSL. Topography in the immediate vicinity of the transformer is flat, with minor localized sloping to the north.

A Site Locus Map (Figure 1), Massachusetts Geographical Information Systems (MassGIS) Map Priority Resource Map (Figure 2), and Aerial (Figure 3) are included in Appendix A.

1.3 Release History

At approximately 7:30 AM on October 4, 2020, the Foxborough Fire Department notified MassDEP of the release of MODF from a pad-mounted transformer at 131 Morse Street. Pursuant to 310 CMR 40.0311(3) and 40.0311(8), the release required notification to MassDEP within two hours, as the Reportable Quantity (RQ) for non-PCB MODF of 25 gallons was exceeded and the release resulted in the appearance of a sheen on a surface water body.

The sudden release of MODF occurred after a motor vehicle accident along Morse Street caused damage to the electrical infrastructure at the 131 Morse Street mill complex, resulting in an electrical fire at the subject pad-mounted transformer and adjacent building. MODF was released to the ground surface surrounding the transformer. While responding to the fire, the Foxborough Fire Department applied copious amounts of water to the building and transformer. As a result, MODF released from the transformer during the fire was subsequently carried by the water to the underlying sluiceway via several openings in the top of the concrete-covered structure.

Tighe & Bond was notified of the release condition at approximately 9:07 AM and responded to the release at approximately 10:30 AM. In addition, Mr. Robert Murphy, of MassDEP, and Mr. William Howard, of MEC, also responded to the release. An initial visual inspection of the transformer area determined that MODF released during the fire was washed into a sluiceway that runs beneath the transformer pad and adjacent building. Inspection of the transformer nameplate did not reveal MODF capacity; however, based on the dimensions of the transformer oil reservoir, the maximum capacity of MODF was estimated as 180 gallons. Information provided to Tighe & Bond from MEC and the Foxborough Fire Department indicated that it is likely that a significant volume of the released MODF was incinerated in the fire. In consideration of the estimated capacity of the transformer reservoir, the volume of MODF recovered during response actions (approximately 50 gallons), and the likelihood that some of the MODF was incinerated during the fire, the volume of MODF released to the environment was estimated to be between 100 to 130 gallons.

1.4 Surrounding Resource Areas

Based on Site reconnaissance and a review of the MassGIS Priority Resource Map (Figure 2), the following resource areas have been identified within one-half mile (2,640 feet) of the Site.

- An unnamed stream flows through a sluiceway located directly beneath the Site, connecting Glue Factory Pond to the Rumford River;
- Glue Factory Pond is located approximately 150 feet east/northeast of the Site;

- MassDEP Inland Wetlands, associated with the Rumford River, are located approximately 270 feet southwest of the Site;
- Protected and Recreational Open Space is located approximately 310 feet southwest of the Site;
- A Medium-yield potentially productive aquifer is located approximately 700 feet northeast of the Site;
- An Area of Critical Environmental Concern is located approximately 1,000 feet east of the Site;
- NHESP Potential vernal pools are located approximately 1,000 feet west and northwest of the Site; and
- A MassDEP Approved Wellhead Protection Area, Zone II, is located approximately 1,200 feet east of the Site.

There are no known drinking water supplies within 500 feet of the Disposal Site. According to the Foxborough Water & Sewer Department, the residential properties to the west of the Site are serviced with municipal water. Additionally, the mill complex at 131 Morse Street is reportedly serviced by the Mansfield Water Department. According to the Mansfield Water Department, the area of Mansfield near the Disposal Site, to the south and east, is serviced with municipal water. According to the Massachusetts Energy & Environmental Affairs (EEA) Data Portal for Well Drilling, the closest known domestic drinking water well is located at 4 Belcher Lane, which is located approximately 2,340 feet west of the Disposal Site. The building at this address is a residential dwelling.

Based on this information, the Site is not located within a Current Drinking Water Source Area or a Potential Drinking Water Source Area.

1.5 Applicable Cleanup Standards

In accordance with 310 CMR 40.0975, the Method 1 soil standards consider both the potential risk of harm resulting from direct exposure to the oil and/or hazardous material in the soil and the potential impacts to groundwater at the Disposal Site. The Method 1 standards include an evaluation of potential receptors at a disposal site, based on the frequency and intensity of site use.

In accordance with 310 CMR 40.0933(9) soil category S-1 is applicable to soil located at depths of 0 to 3 feet BGS, in unpaved areas, as this soil is considered "accessible". At this point in time, no remaining MODF-impacted soil has been identified in unpaved locations at a depth of less than 3 feet BGS. Additionally, the Site is a commercial/industrial mill building, where children would likely be present at a low intensity and low frequency. Based on the current frequency and intensity of use by human receptors, Site soils are categorized as S-2, as impacted soils if present at the Site are located beneath concrete pavement or concrete structures and are considered potentially accessible or inaccessible. Should Site conditions change as additional response actions are completed, the applicable soil category(ies) will be evaluated and modified as necessary.

Pursuant to 310 CMR 40.0932, groundwater within a Current Drinking Water Source Area or within a Potential Drinking Water Source Area is designated as category GW-1. Groundwater located within 30 feet of an existing or planned building where annual

average depth to groundwater is less than 15 feet BGS is designated as GW-2. Category GW-2 standards are designated to be protective of potential impacts to indoor air quality from vapor phase migration of groundwater contaminants. In accordance with 310 CMR 40.0932, groundwater at all disposal sites shall be categorized as GW-3, and more than one groundwater category may be applicable to a Site.

The Site is not located within a Current Drinking Water Source Area or within a Potential Drinking Water Source Area. Depth to groundwater is approximately three feet BGS and the Disposal Site boundaries are located within 30 feet of a building. Therefore, groundwater categories GW-2 and GW-3 are applicable to the Disposal Site.

Section 2 Description of IRA Activities

This Completion Report summarizes IRAs completed at the Site following the discovery of the release.

2.1 Initial Response Actions – October 4,

On October 4, 2020, at 7:30 AM, the Foxborough Fire Department notified MassDEP of a sudden release of MODF from a pad-mounted transformer involved in an electrical fire. The MODF was released to the area surrounding the transformer and to a covered sluiceway that runs under the adjacent building. The sluiceway eventually discharges to a stream and ultimately to the Rumford River. Upon discovery of the impact to the sluiceway, the Foxborough Fire Department placed a boom within the sluiceway, downstream of the release location.

Tighe & Bond personnel responded to the release, arriving at approximately 10:30 AM. Clean Harbors Environmental Services (CHES), of Weymouth, Massachusetts, arrived on-Site at approximately 12:45 PM to initiate remediation activities. Mr. Robert Murphy, of MassDEP, and Mr. William Howard, of MEC, also responded to the release. Upon arrival, the damaged transformer could not be immediately assessed due to elevated temperatures resulting from the fire.

After Foxborough Fire Department personnel deemed the temperatures of the transformer reservoir safe to handle, CHES pumped approximately 50 gallons of MODF from the transformer reservoir. Information obtained from the manufacturer's metal nameplate affixed within the transformer cabinet is listed below:

Manufacturer: Westinghouse Serial Number: 83JL073026 Oil Capacity: Not Listed

Rating: 300 kVa

PCB Status: Filled with Mineral Oil That Contained Less than 50 PPM PCB at Time

of Manufacture

Although the transformer did not have a listed capacity on the nameplate, based on the dimensions of the transformer reservoir, the maximum capacity of MODF was estimated to be 180 gallons. Based on information obtained from MEC and the Foxborough Fire Department, it is likely that a significant volume of the MODF was incinerated in the fire rather than released to the environment. Therefore, it is estimated that a maximum of 100 to 130 gallons of MODF were released from the transformer during the electrical fire.

Although the transformer nameplate indicated that the PCB concentration of the MODF was less than 50 parts per million (ppm) PCBs, a sample of the MODF was field screened for PCBs using a Dexsil Clor-N-Oil kit to verify this information. The results of the field screening also indicated the PCB content of the MODF was less than 50 ppm. Additionally, a sample of MODF was collected from the transformer and was submitted for laboratory analysis of PCBs. Laboratory analytical results of the oil sample indicated that the PCB content was less than 2 ppm. A copy of the laboratory analytical report is included in

Appendix B. MEC was unable to remove the transformer from the pad on October 4, 2020 due to elevated temperatures of the transformer shell.

An initial inspection of the release area by Tighe & Bond personnel, MassDEP's Robert Murphy, and MEC's William Howard, suggested that the MODF released during the fire was washed into the sluiceway that runs beneath the transformer pad and adjacent building. Based on this initial assessment, Mr. Murphy provided oral approval of IRA activities including the application of absorbent material (including granular absorbents and sorbent booms), product recovery, removal of up to 25 cubic yards of soil, and assessment activities.

Upon removal of the remaining MODF from the transformer, CHES, with oversight provided by Tighe & Bond, removed MODF impacted soil, debris, and vegetation that surrounded the concrete transformer pad. During the removal activities, it was determined that the soil, debris, and vegetation was underlain by a concrete slab. Therefore, the depth of soil excavation was limited to approximately six inches. After exposing the concrete surface within the release area, liquid degreaser was applied to the concrete and was recovered with a vacuum truck. During the degreasing of the concrete surfaces surrounding the transformer pad, an approximate eight-inch hole was identified approximately ten feet to the south of the transformer pad. Observations of the hole identified a direct pathway to the sluiceway running beneath the transformer and adjacent building.

The extent of impacted soil, debris, and concrete surrounding the transformer were measured to be approximately 46 feet long by 30 feet wide, at the greatest extent. In addition to the surficial impacts in the vicinity of the transformer, sand and debris in front of the building entrance was also removed. As concrete was identified beneath all soil/debris removal areas, no post-excavation soil samples were collected during response actions on October 4, 2020.

In addition to the boom installed by the Foxborough Fire Department, CHES installed two additional booms within the sluiceway/stream on October 4, 2020, a second one in close proximity to the release area and one approximately 280 feet downstream from the release area. Refer to Figure 4 for locations of booms.

2.2 Oil Recovery

After the initial deployment of booms on October 4, 2020, CHES returned to the release area on October 6, 2020 to conduct additional recovery efforts from within the sluiceway and stream. CHES personnel utilized oil-absorbent pads and a skimmer to remove foam and a sheen on the surface of the stream that had accumulated upstream of each boom segment. Based on the documented release conditions, this material was assumed to include, in part, residual MODF. After recovery, CHES replaced all of the existing deployed booms with new sorbent booms and added two additional boom segments to further assist in containment of released product. The locations of the deployed boom segments are depicted on Figure 4.

Since the initial recovery activities, CHES, on behalf of MEC has continued to periodically manage the booms in the sluiceway and stream. During each event, CHES utilized skimmers to recover foam and if present, emulsified oil visible sheen that had accumulated behind the boom segments within the sluiceway and stream channel. Following removal of the accumulated material, each boom segment was removed, containerized in steel

drums for proper off-Site disposal, and replaced with a new boom segment. The specific dates of boom change outs are presented in Table 2-1 in Section 2.8.

2.3 Surface Water Sampling

On December 9, 2020, Tighe & Bond personnel collected samples of the surface water at three locations within the stream channel. Samples were collected upstream of the release area, proximate to Glue Factory Pond (SW-1), within the emulsified oil accumulated immediately behind a boom segment (SW-2), and downstream of the furthest downstream boom segment (SW-3), as shown on Figure 4. Samples SW-1 and SW-3 were submitted to ESS Laboratory (ESS) of Cranston, Rhode Island for analysis of extractable petroleum hydrocarbon (EPH) carbon ranges. Sample SW-2 was submitted for total petroleum hydrocarbon (TPH) Fingerprint analysis via EPA Method 8100M.

Laboratory analytical results did not reveal EPH hydrocarbon ranges at concentrations above laboratory method detection limits in samples SW-1 and SW-3. Fingerprint analysis of sample SW-2 indicated the sample represented petroleum hydrocarbons within the transformer oil range; however, the report excluded the quantitative TPH result and did not provide further detail on the range of hydrocarbons detected. Surface water analytical results are presented on Table 3 in Appendix C and further summarized in Section 2.4.3. A copy of the laboratory analytical report is included in Appendix B

2.4 February 2021 Soil Excavation

During the period of February 22 and February 24, 2021, Tighe & Bond was on site to observe CHES remove the concrete transformer pad and MODF-impacted soils underlying the transformer. CHES demolished the contaminated concrete pedestal and pad beneath the transformer location to access contaminated soil. In addition, a segment of the concrete duct-bank encasing the electrical conduits was also removed to facilitate soil removal. The duct-bank runs from the transformer to the nearest utility pole located to the southwest of the transformer as shown on Figure 5. The impacted concrete was transported off-Site for disposal/recycling as remediation waste.

Upon removal of the transformer pad, CHES excavated MODF-impacted soil in the vicinity of the former transformer using hand tools and vacuum-excavation methods. During soil excavation, the electric cables and PVC conduits leading to the former transformer were cut and removed to facilitate soil excavation. The extent of soil excavation was limited due to the proximity of the adjacent concrete sluiceway to the south and the building foundation to the north. The final excavation dimensions were approximately 6.5 feet long by five feet wide to a maximum depth of 2.5 feet bgs.

An estimated 10 yards of oily solids (concrete and soil) were generated from the Site as remediation waste for disposal. At the completion of the excavation activities, Tighe & Bond collected five soil samples (PX-2 through PX-6) from the sidewalls and base of the excavation area. An additional sample (PX-1) was collected from an area three feet to the west of the excavation through an area of cracked concrete pavement. Each of the six samples were field screened for TPH with a Dexsil PetroFLAG® analyzer (PetroFLAG®). Results of the PetroFLAG® field-screening are included on Table 1 in Appendix C and indicated elevated TPH concentrations at PX-1, PX-4, PX-5, and PX-6.

Following the completion of soil removal activities on February 24, 2021, six confirmatory soil samples (PX-1 through PX-6) were collected and submitted to ESS for analysis of EPH carbon ranges. Soil analytical results are presented on Table 1 in Appendix C and indicate soil samples from the bottom, south sidewall, and west sidewall (PX-4, PX-5, and PX-6) revealed elevated concentrations of EPH carbon ranges, in excess of the applicable MCP Method 1 S-2/GW-2 and S-2/GW-3 standards. As indicated above, the extent of the excavation was limited due to safety concerns associated with the structural integrity of the building and the sluiceway. Post excavation soil sample results represent end-point conditions upon completion of the limited excavation activities. These results indicated that additional assessment and/or remediation was necessary in the vicinity of the excavation. A copy of the laboratory analytical report is included in Appendix B.

During soil excavation activities, two 6-inch diameter pipes were observed within the excavation area. The pipes were located at a depth of approximately three to four feet bgs and were oriented perpendicular to the building foundation and sluiceway. The pipes were observed to be intact (in the areas exposed during excavation) with no major cracks or damage and were observed to penetrate the wall of the sluiceway. Although no liquid was observed entering the sluiceway from either pipe during the period of February 22 through February 24, 2021, the pipes are believed to be drain lines connecting one or more floor drains within the adjacent building to the sluiceway.

2.5 Structural Stability Analysis

On March 9, 2021, McKenzie Engineering Company, Inc. (McKenzie) was contracted by MEC to conduct a preliminary structural analysis of the adjacent building. Tighe & Bond and CHES were present during the Site walk completed by McKenzie. McKenzie observed portions of the sluiceway visible from ground surface and observed the exterior of the building in the area abutting the transformer. McKenzie concluded that structural stabilization methods to the wall system abutting the transformer were necessary to complete additional excavation in the vicinity of the release. A copy of the preliminary assessment documentation prepared by McKenzie Engineering was included in the IRA Status Report submitted on August 3, 2021.

2.6 MODF Fingerprint and Petroleum Forensic Analysis

During the period of March and April 2021, Tighe & Bond collected samples of the observed emulsified oil that had accumulated at the downstream boom location. The samples were submitted to ESS along with a previously collected soil sample (PX-5) for petroleum hydrocarbon fingerprint analysis via EPA Method 8100M and/or saturated hydrocarbons via EPA Method 8015M. The objective of the petroleum forensics analyses was to qualitatively identify the oil within the samples and compare the petroleum characteristics of the emulsified oil collected from the stream to the petroleum characteristics of the soil sample that was impacted by the MODF release.

The results of the evaluation indicated that the emulsified oil contained a mixture of petroleum product eluting in the mid to heavy molecular weight ranges indicative of waste oils, lubricating oils, transformer oils and motor oils. However, comparison of the emulsified oil sample to the soil sample indicated the petroleum hydrocarbon composition within the soil sample appears to be more representative of MODF than that of the emulsified oil sample collected from the stream. Based on this information, it is likely that

an alternate source of oil is contributing to the emulsified oil observed within the stream channel. The laboratory analytical reports are included in Appendix B.

2.7 Sluiceway Investigation

On June 10, 2021, Frogmen Divers & Marine Service, Inc. (FDMS) of Sandwich, Massachusetts completed a visual investigation of the sluiceway. The objective of the sluiceway investigation was to document conditions within the sluiceway and identify potential migration pathways to the surface water body. General observations documented by FDMS are included below.

- Sections of the sluiceway structure abutting the transformer were observed to be in poor condition with deteriorated, crumbling concrete, as well upstream caveins.
- Light staining indicative of potential oil impact was observed on the walls and ceiling of the sluiceway directly abutting the transformer location. No visual evidence of active migration of MODF to the sluiceway was observed.
- Heavy, dark petroleum staining was observed on the interior concrete walls slightly above the observed water line within the remainder of the sluiceway.
- Numerous drainpipes were observed leading from the direction of the adjacent building into the sluiceway. The observed drainpipes near the release area and upstream of the release area were scoped with a camera. Generally, within the first 5 to 15 feet from the sluiceway walls, the pipes contained debris which prevented the camera from being advanced further. As such, the point of origination of the pipes could not be ascertained.

In addition to these observations, an absorbent boom section was placed in the sluiceway upstream of the transformer location to qualitatively evaluate background conditions upstream of the release. The upstream boom location has consistently shown visual indications of petroleum staining, as described later in Section 2.9.

2.8 Limited Subsurface Assessment

On December 29, 2021, Tighe & Bond observed Martin GeoEnvironmental, LLC (Martin Geo), of Belchertown, Massachusetts, advanced three borings in the vicinity of the former transformer using vacuum excavation methods and Geoprobe® direct push drilling techniques. Each soil boring location was pre-cleared to a depth of approximately five feet bgs using vacuum excavation. Each boring was then completed to depth with a track-mounted Geoprobe direct-push drill rig. Soils encountered at each location were visually observed and consisted of a mixture of sand and gravel with trace amounts of silt. All three borings were completed as groundwater monitoring wells. Soil borings were advanced to a depth of approximately ten feet bgs, approximately six to seven feet into the groundwater table.

The soil boring locations are shown on Figures 5 and 6 in Appendix A. Soil boring and groundwater monitoring well completion logs are included in Appendix D. As shown on Figures 5 and 6, monitoring wells MW-2 and MW-3 were installed on either side of the former transformer, just at or beyond the extents of the soil removal described in Section

2.2. These locations were selected to delineate the horizontal extent of the potential MODF impact with consideration of physical Site constraints such as the underlying sluiceway and the adjacent structurally compromised building. MW-1 is located on the opposite side of the sluiceway from the former transformer. This location was selected due to the exceedance of EPH ranges in the southern sidewall post excavation (PX-5) soil sample but could not be located immediately outside the bounds of the excavation due to the presence of the sluiceway.

During the advancement of each soil boring, select samples were collected for field-screening with a PetroFLAG® for the presence of TPH. Field screening results are shown on Table 1 in Appendix C. A total of five samples (B-1 (2.5-5'), B-2 (2.5-5'), B-2 (5-7'), B-3 (2.5-5'), and B-3 (5-7')) were submitted to ESS for analysis of EPH carbon ranges. In addition, one sample, B-3 (5-7'), was submitted for petroleum fingerprint analysis via EPA Method 8100M and one sample, B-3 (2-5'), was submitted for sieve analysis. The results of the sieve analysis identified the soil as brown, well-graded gravel with silt and sand.

As indicated on Table 1 in Appendix C, EPH carbon ranges were detected in three of the five soil samples (B-2 (5-7'), B-3 (2.5-5'), and B-3 (5-7')); at concentrations well below the applicable MCP Method 1 S-2/GW-2 and S-2/GW-3 standards. These data suggest residual MODF impact to soil remaining after excavation activities is limited to the area immediately beneath the former transformer. Laboratory analytical results are summarized in Table 1 in Appendix C and the laboratory analytical reports are included in Appendix B. In addition, petroleum identification performed by the laboratory on sample B-3 (5-7') indicated that the sample contained material eluting in the mid to high molecular weight ranges of the chromatogram. Examples of similar material eluting in these ranges are hydraulic, transformer, motor and lubricating oils. Information obtained from the laboratory indicates that this sample could contain multiple sources of petroleum.

Each boring was completed as a groundwater monitoring well, with nine feet of slotted PVC well screen and one foot of solid PVC riser. The monitoring wells were finished at ground surface with flush-mount road boxes. After installation, each well was developed on December 29, 2021, removing between 20 and 30 gallons from each well.

Tighe & Bond returned to the Site on January 6, 2022 to collect groundwater samples and conduct a wellhead elevation survey. The top of PVC casing at each monitoring well was surveyed for location and elevation relative to a local benchmark with an assigned elevation of 100 feet. Prior to sample collection, each monitoring well was gauged for depth to groundwater and for the presence of light non-aqueous phase liquid (LNAPL). LNAPL was not observed in any of the monitoring wells during these activities. Groundwater samples were collected from monitoring wells MW-1 through MW-3 (inadvertently called BW-1 through BW-3 on the laboratory report), via low-flow sampling techniques and were submitted to ESS for EPH carbon range analysis. The results of the laboratory analysis are included on Table 2 in Appendix C and indicate that EPH carbon ranges were not detected at concentrations above laboratory method reporting limits (MRLs). The laboratory analytical report is provided in Appendix B.

Groundwater elevations were calculated based on the data obtained from the wellhead elevation survey and monitoring well gauging activities. Based solely on these data, the localized groundwater flow direction within the well network appears to be to the north. Although site-specific data suggest groundwater flow direction to the north, one of the

three wells (MW-1) is separated from the other two (MW-2 and MW-3) by the sluiceway that runs beneath the Site. Based on the measured depth to groundwater and depth of the sluiceway, it is likely that the sluiceway is causing localized influence on groundwater flow direction by acting as a flow boundary between the monitoring wells. A groundwater elevation map depicting the location of the sluiceway with respect to the monitoring wells is included as Figure 6 in Appendix A.

Based on a review of historical environmental reports associated with the mill complex, the groundwater flow direction is to the south/southwest towards the Rumford River. This is generally consistent with the presumption that localized groundwater flow is likely to follow local topography flow towards the sluiceway/stream, which eventually discharges to the Rumford River. The Rumford River generally flows to the south of the Disposal Site.

2.9 Oil Absorbent Boom Removal

Based on the results of the June 2021 sluiceway assessment, the December 2021 limited subsurface assessment and continued observation of the deployed boom segments, it was determined that the MODF released from the transformer was no longer likely migrating to the sluiceway. The rationale for this determination is provided below:

- In June 2021 light staining was observed on portion of the sluiceway structure in the area of the transformer, but no active MODF migration was observed.
- Well gauging information obtained on January 6, 2022 indicated no LNAPL present in monitoring wells in the immediate release area.
- The groundwater analytical results from the January 6, 2022 sampling event indicated no dissolved phase EPH carbon ranges in groundwater in the immediate release area
- Visual observations of the downstream boom segments indicated the presence of organic foaming but minimal visual indication of emulsified oil (as seen in Photograph 1 in Appendix E)
- The absorbent boom segments placed upstream of the transformer release were observed to contain apparent petroleum hydrocarbon impact (see Photograph 2 in Appendix E).

Based on these multiple lines of evidence, the boom segments deployed in the sluiceway and stream channel as part of response actions completed under RTN 4-28528 were removed on January 26, 2022.

2.10 Management of Remediation Waste

Remediation waste generated during the IRA consisted of absorbent materials, contaminated soil, contaminated concrete, and emulsified oil recovered from the stream.

The following table summarizes remediation waste generated during sluiceway and stream channel remediation efforts.

Table 2-1 - Booms, Absorbent Pads, and Recovered Product

Date	UHWM	Volume	Container	Description	Designated Facility
10/4/2020	015188123FLE	129 gallons	Tank Truck	MODF	CHES Braintree
10/6/2020	015188146FLE	300 pounds	Drums	Oily Debris	Clean Harbors El Dorado
10/22/2020	015189992FLE	240 pounds	Drums	Oily Debris	Clean Harbors Grassy Mountain
11/20/2020	015188520FLE	200 pounds	Drums	Oily Debris	Clean Harbors El Dorado
12/9/2020	011026028FLE	300 pounds	Drums	Oily Solids	Clean Harbors Grassy Mountain
12/31/2020	015519517FLE	250 pounds	Drums	Oily Debris	Clean Harbors Grassy Mountain
1/22/2021	011026040FLE	300 pounds	Drums	Oily Solids	Clean Harbors Grassy Mountain
2/11/2021	015513221FLE	150 pounds	Drums	Oily Debris	CHES Braintree
2/22/2021	015513162FLE	300 pounds	Drums	Oily Debris	CHES Braintree
3/11/2021	015520454FLE	200 pounds	Drums	Oily Debris	CHES Braintree
4/2/2021	015519986FLE	300 pounds	Drums	Oily Debris	CHES Braintree
5/11/2021	015829497FLE	300 pounds	Drums	Oily Debris	CHES Braintree
6/10/2021	015834702FLE	350 pounds	Drums	Oily Debris	CHES Braintree
9/8/2021	016455987FLE	500 pounds	Drums	Oily Solids	Clean Harbors El Dorado
1/26/2022	016325056FLE	1,400 pounds	Drums	Oily Solids	CHES Braintree

The following table summarizes remediation waste generated during source-area removal activities in the vicinity of the former transformer area:

Table 2-2 - Contaminated Soil and Concrete

Date	UHWM	Volume	Container	Description	Designated Facility
10/4/2020	011032243FLE	Four yards	Tank Truck	Oily Solids	CHES Braintree
2/23/2021	015513164FLE	Three yards	Dump Truck	Oily Debris	CHES Braintree
2/24/2021	015519880FLE	Four yards	Tank Truck	Oily Solids	CHES Braintree
2/24/2021	015519881FLE	Three yards	Dump Truck	Oily Solids	CHES Braintree

Final copies of the Uniform Hazardous Waste Manifests (UHWM) are included in Appendix F.

Section 3 IRA Evaluation

3.1 Critical Exposure Pathway Evaluation

An evaluation of Critical Exposure Pathways (CEPs) was presented in the December 2020 IRA Plan. As indicated in the IRA Plan, a CEP did not exist based on the lack of schools, residences, day care facilities and/or drinking water supply wells located at or in the immediate vicinity of the Disposal Site. Since the initial CEP evaluation, site conditions have not substantially changed and property use in the immediate vicinity remains consistent with the use presented in the IRA Plan. Based on this information and the distance to residential dwellings, schools, and daycares; the characteristics of MODF which are deemed not volatile; and the lack of impact to groundwater at the Disposal Site, a CEP is not likely to exist at the Disposal Site.

3.2 Imminent Hazard Evaluation

An Imminent Hazard (IH) is a hazard which poses a significant risk of harm to health, safety, public welfare or the environment if it were present for even a short period of time. Releases that constitute an IH are defined in 310 CMR 40.0321.

Based on the site assessment activities conducted to date at the Disposal Site, none of the conditions which pose or could pose an IH have been met.

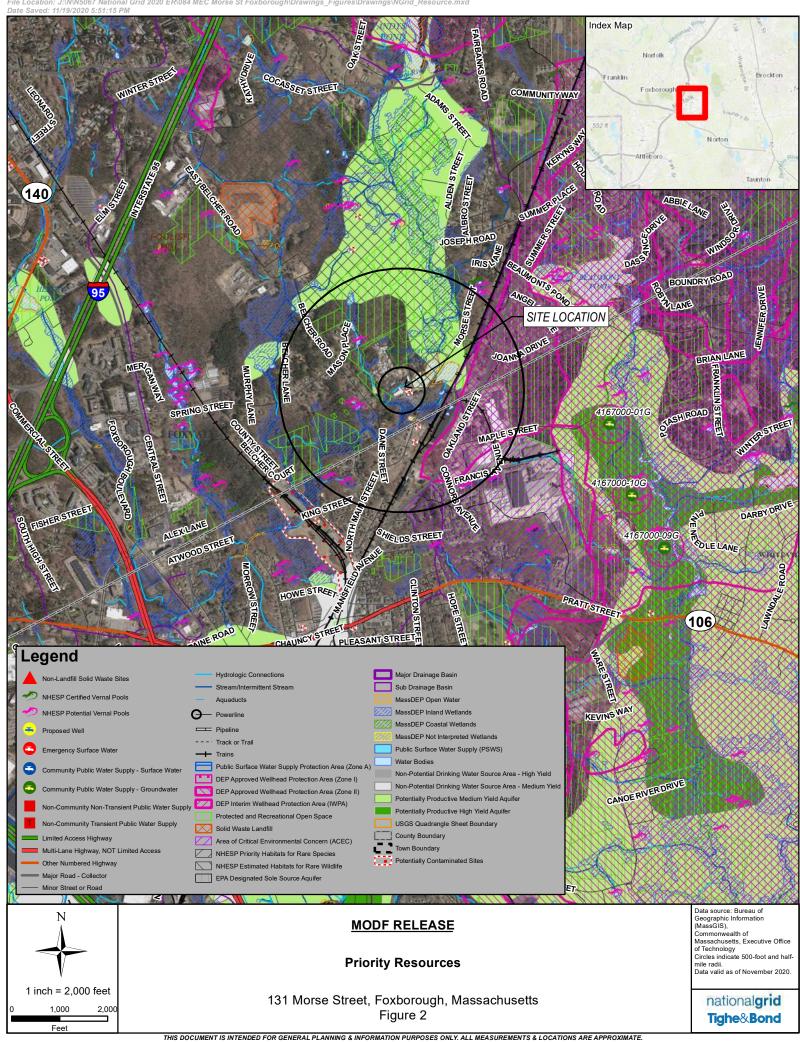
3.3 Substantial Release Migration Evaluation

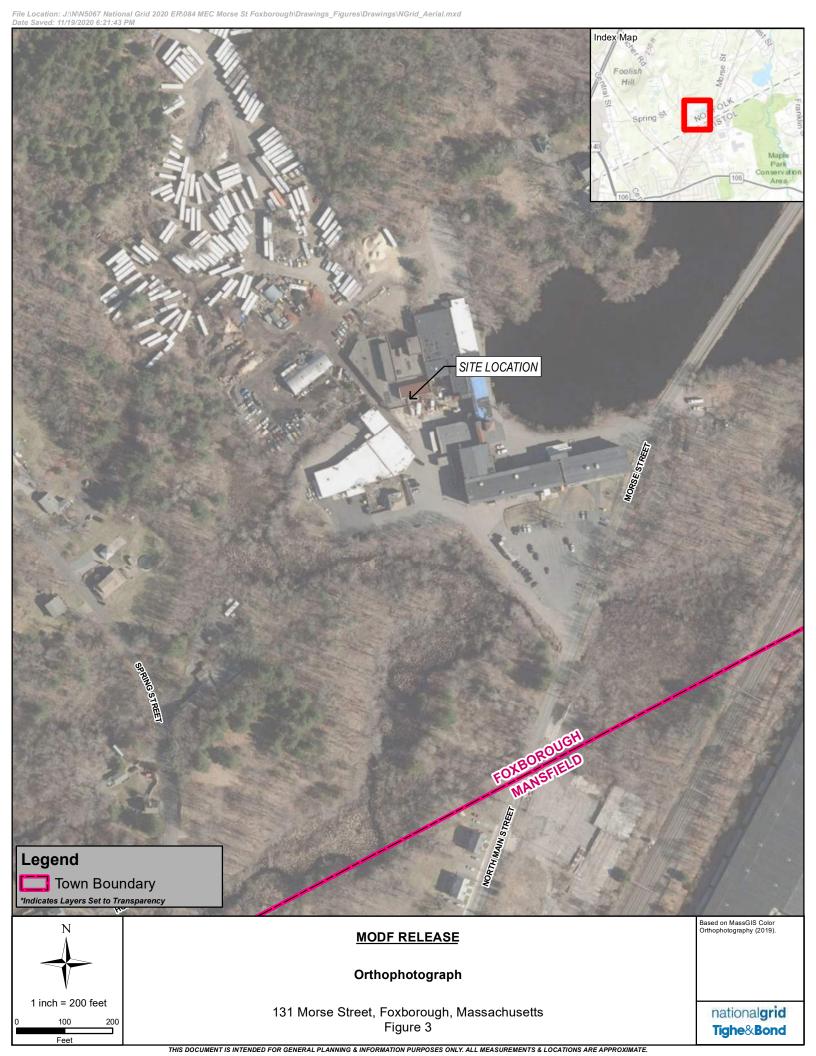
As stated in the December 2020 IRA Plan, a Condition of Substantial Release Migration (SRM) existed at the Disposal Site at the time of the release based on the discharge of separate-phase oil to the sluiceway as documented by the Foxboro Fire Department. As documented herein, the condition of SRM has been evaluated as part of the IRA and has been addressed through the implementation of response actions under the IRA. Specifically, the source of the release has been eliminated through the removal of the damaged transformer and MODF concentrations in the environment have been reduced via the excavation of MODF-impacted soil and recovery of emulsified oil from the sluiceway and stream channel. Additionally, the results of a detailed evaluation of the sluiceway in June 2021 did not identify evidence of MODF entering the sluiceway in the vicinity of the former transformer. Furthermore, recent subsurface investigation activities conducted in the immediate vicinity of the former transformer did not reveal the presence of LNAPL in soil or on groundwater within the monitoring wells and EPH carbon ranges were not detected in groundwater samples collected from the three wells. information, the source of MODF has been eliminated and the concentrations of residual MODF remaining in site soil have been reduced such that the Condition of SRM has been eliminated.

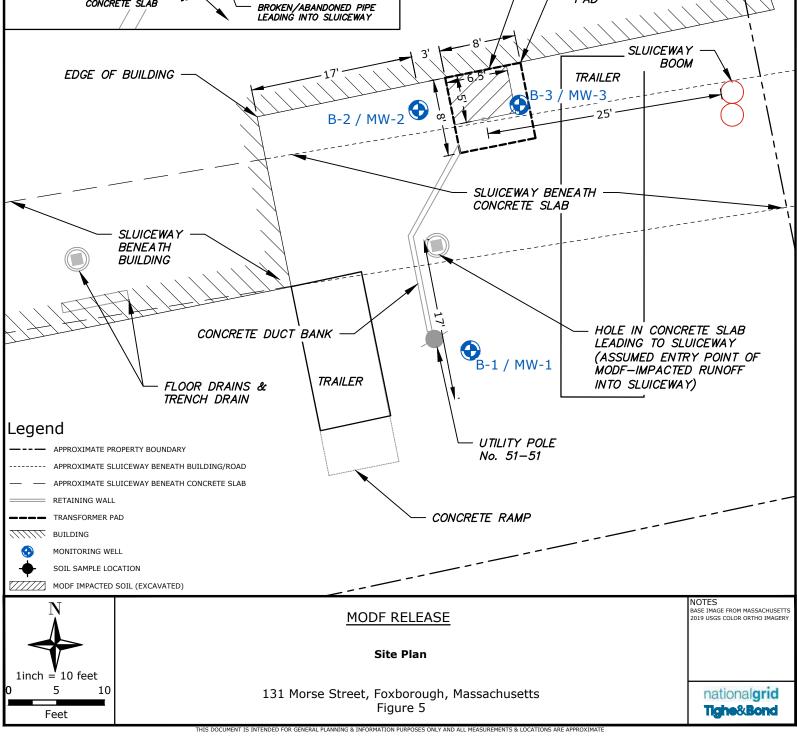
Section 4 IRA Completion Statement and On-Going Activities

On behalf of MEC, Tighe & Bond has prepared this IRA Completion Report for a release of non-PCB MODF from a pad-mounted transformer at 131 Morse Street in Foxborough, Massachusetts. This report was prepared in accordance with the requirements set forth in 310 CMR 40.0427(4). The subsurface limitations applicable to this IRA Completion Report are included in Appendix G.


Response actions were conducted at the Disposal Site in accordance with 310 CMR 40.0410 and included the recovery of MODF, excavation of MODF-impacted soil and debris, and assessment of site conditions including soil and groundwater impacts, preferential migration pathways, and surface water impacts. As a result of these IRA activities, the conditions that gave rise to the need for the IRA have been assessed and remediated such that the previously identified condition of SRM has been eliminated and the stabilization of site conditions has been achieved pursuant to 310 CMR 40.0427. In addition, CEPs and/or Imminent Hazard conditions did not exist at the outset of the IRA and do not exist at the time of the IRA Completion Statement. Therefore, the IRA associated with RTN 4-28528 is viewed to be complete


Future response actions related to this IRA will consist of additional assessment activities and may include additional soil, groundwater, and surface water sample collection and analysis. Additional investigation activities will be conducted as part of a Phase II Comprehensive Site Assessment in accordance with 310 CMR 40.0800.


Section 5 Public Notification


In accordance with the public notification requirements of the MCP, 310 CMR 40.1403(10), the property owner has been provided notice of environmental sampling activities and the laboratory analytical results. Copies of these notices are included as Appendix H.

APPENDIX A

APPENDIX B

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Matt Abraham Tighe & Bond 120 Front Street, Suite 7 Worcester, MA 01608

RE: MEC - 131 Morse St Foxborough MA (N-5067-084) ESS Laboratory Work Order Number: 21C0073

This signed Certificate of Analysis is our approved release of your analytical results. These results are only representative of sample aliquots received at the laboratory. ESS Laboratory expects its clients to follow all regulatory sampling guidelines. Beginning with this page, the entire report has been paginated. This report should not be copied except in full without the approval of the laboratory. Samples will be disposed of thirty days after the final report has been delivered. If you have any questions or concerns, please feel free to call our Customer Service Department.

Laurel Stoddard Laboratory Director REVIEWED

By ESS Laboratory at 4:02 pm, Mar 09, 2021

Analytical Summary

The project as described above has been analyzed in accordance with the ESS Quality Assurance Plan. This plan utilizes the following methodologies: US EPA SW-846, US EPA Methods for Chemical Analysis of Water and Wastes per 40 CFR Part 136, APHA Standard Methods for the Examination of Water and Wastewater, American Society for Testing and Materials (ASTM), and other recognized methodologies. The analyses with these noted observations are in conformance to the Quality Assurance Plan. In chromatographic analysis, manual integration is frequently used instead of automated integration because it produces more accurate results.

The test results present in this report are in compliance with TNI and relative state standards, and/or client Quality Assurance Project Plans (QAPP). The laboratory has reviewed the following: Sample Preservations, Hold Times, Initial Calibrations, Continuing Calibrations, Method Blanks, Blank Spikes, Blank Spike Duplicates, Duplicates, Matrix Spikes, Matrix Spike Duplicates, Surrogates and Internal Standards. Any results which were found to be outside of the recommended ranges stated in our SOPs will be noted in the Project Narrative.

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Client Project ID: MEC - 131 Morse St Foxborough MA ESS Laboratory Work Order: 21C0073

SAMPLE RECEIPT

The following samples were received on March 02, 2021 for the analyses specified on the enclosed Chain of Custody Record.

To achieve CAM compliance for MCP data, ESS Laboratory has reviewed all QA/QC Requirements and Performance Standards listed in each method. Holding times and preservation have also been reviewed. All CAM requirements have been performed and achieved unless noted in the project narrative.

Each method has been set-up in the laboratory to reach required MCP standards. The methods for aqueous VOA and Soil Methanol VOA have known limitations for certain analytes. The regulatory standards may not be achieved due to these limitations. In addition, for all methods, matrix interferences, dilutions, and %Solids may elevate method reporting limits above regulatory standards. ESS Laboratory can provide, upon request, a Limit Checker (regulatory standard comparison spreadsheet) electronic deliverable which will highlight these exceedances.

Question I: All samples for EPH were analyzed for a subset of the required MCP list per the client's request.

Lab Number	Sample Name	Matrix	Analysis
21C0073-01	PX-1	Soil	EPH8270, MADEP-EPH
21C0073-02	PX-2	Soil	EPH8270, MADEP-EPH
21C0073-03	PX-3	Soil	EPH8270, MADEP-EPH
21C0073-04	PX-4	Soil	EPH8270, MADEP-EPH
21C0073-05	PX-5	Soil	EPH8270, MADEP-EPH
21C0073-06	PX-6	Soil	EPH8270, MADEP-EPH

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Client Project ID: MEC - 131 Morse St Foxborough MA ESS Laboratory Work Order: 21C0073

PROJECT NARRATIVE

MADEP-EPH Extractable Petroleum Hydrocarbons

21C0073-04 <u>Surrogate recovery(ies) diluted below the MRL (SD).</u>

1-Chlorooctadecane (% @ 40-140%)

21C0073-05 Surrogate recovery(ies) diluted below the MRL (SD).

1-Chlorooctadecane (% @ 40-140%)

21C0073-06 Surrogate recovery(ies) diluted below the MRL (SD).

1-Chlorooctadecane (% @ 40-140%)

D1C0070-CCV1 Continuing Calibration %Diff/Drift is above control limit (CD+).

Fluorene (22% @ 20%)

D1C0070-CCV6 Continuing Calibration %Diff/Drift is above control limit (CD+).

Fluorene (22% @ 20%), O-Terphenyl (23% @ 20%), Phenanthrene (22% @ 20%)

D1C0070-CCV8 Continuing Calibration %Diff/Drift is above control limit (CD+).

Fluoranthene (21% @ 20%)

D1C0070-CCVA Continuing Calibration %Diff/Drift is above control limit (CD+).

Fluoranthene (22% @ 20%), O-Terphenyl (23% @ 20%)

No other observations noted.

End of Project Narrative.

DATA USABILITY LINKS

To ensure you are viewing the most current version of the documents below, please clear your internet cookies for www.ESSLaboratory.com. Consult your IT Support personnel for information on how to clear your internet cookies.

Definitions of Quality Control Parameters

Semivolatile Organics Internal Standard Information

Semivolatile Organics Surrogate Information

Volatile Organics Internal Standard Information

Volatile Organics Surrogate Information

EPH and VPH Alkane Lists

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

Service

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Client Project ID: MEC - 131 Morse St Foxborough MA ESS Laboratory Work Order: 21C0073

CURRENT SW-846 METHODOLOGY VERSIONS

Analytical Methods

1010A - Flashpoint

6010C - ICP

6020A - ICP MS

7010 - Graphite Furnace

7196A - Hexavalent Chromium

7470A - Aqueous Mercury

7471B - Solid Mercury

8011 - EDB/DBCP/TCP

8015C - GRO/DRO

8081B - Pesticides

8082A - PCB

8100M - TPH

8151A - Herbicides

8260B - VOA

8270D - SVOA

8270D SIM - SVOA Low Level

9014 - Cyanide

9038 - Sulfate

9040C - Aqueous pH

9045D - Solid pH (Corrosivity)

9050A - Specific Conductance

9056A - Anions (IC)

9060A - TOC

9095B - Paint Filter

MADEP 04-1.1 - EPH

MADEP 18-2.1 - VPH

SW846 Reactivity Methods 7.3.3.2 (Reactive Cyanide) and 7.3.4.1 (Reactive Sulfide) have been withdrawn by EPA. These methods are reported per client request and are not NELAP accredited.

Prep Methods

3005A - Aqueous ICP Digestion

3020A - Aqueous Graphite Furnace / ICP MS Digestion

3050B - Solid ICP / Graphite Furnace / ICP MS Digestion

3060A - Solid Hexavalent Chromium Digestion

3510C - Separatory Funnel Extraction

3520C - Liquid / Liquid Extraction

3540C - Manual Soxhlet Extraction

3541 - Automated Soxhlet Extraction

3546 - Microwave Extraction

3580A - Waste Dilution

5030B - Aqueous Purge and Trap

5030C - Aqueous Purge and Trap

5035A - Solid Purge and Trap

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181 Dependability

Quality

Fax: 401-461-4486 Service

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Client Project ID: MEC - 131 Morse St Foxborough MA ESS Laboratory Work Order: 21C0073

MassDEP Analytical Protocol Certification Form

	MADEP F	RTN:					_							
Thi	s form provides	certi	ĩca	ation for the follow	ving d	ata set: 21C0073-01 t	hrou	ugh 21C0073-06						
Ma	trices: () Grou	nd W	/ate	er/Surface Water		(x) Soil/Sediment	(() Drinking Water	() A	ir	() Other:_			
CA	M Protocol (ch	eck :	all	that apply below):									
()	8260 VOC CAM II A	()	7470/7471 Hg CAM III B	()	MassDEP VPH (GC/PID/FID) CAM IV A	(() 8082 PCB CAM V A	(C	014 Total yanide/PAC AM VI A	() 6860 Perch CAM VIII B	lorate
()	8270 SVOC CAM II B	()	7010 Metals CAM III C	()	MassDEP VPH (GC/MS) CAM IV C	(() 8081 Pesticides CAM V B	() 7	196 Hex Cr AM VI B	() MassDEP A CAM IX A	APH
()	6010 Metals CAM III A	()	6020 Metals CAM III D	(x)	MassDEP EPH CAM IV B	(() 8151 Herbicides CAM V C	(-	xplosives CAM VIII A	() TO-15 VOC CAM IX B	
			Į.	Affirmative respo	nses t	o questions A throug	gh F	are required for ''Pi	resump	tive	Certainty'' sta	ıtus		
A			cei	ved in a condition	consi	stent with those descr	ibed	on the Chain-of-Custo d/analyzed within metl	dy, pro	perly	7		Yes (x) No	o()
В	•	-	-					fied in the selected CA		_			Yes (X) No	o()
C	Were all requir					ical response actions:	_	ified in the selected Ca	AM pro	tocol	l(s)		Yes (x) No	o()
D	Does the labora	atory	re	port comply with	all the	reporting requiremen	ts sp	pecified in the CAM Virting of Analytical Dat		ualit	у		Yes (x) No	o()
Е	VPH, EPH, AF	H an	ď.	ΓO-15 only: a. Wa	s each	_	_	ut significant modifica		(Re	fer		Yes (x) No	o()
				* *	-	nplete analyte list repo	ortec	l for each method?					Yes () No	o()
F					-	formance standard no sponses to Questions		onformances identified rough E)?	and eva	aluat	ed		Yes (X) No	o()
				_	_			e required for '''Presu	_		•			
G	<u>Data User Note</u>	<u>:</u> Dat	a t	hat achieve ''Presi	ımptiv		y no	in the selected CAM part necessarily meet the and WSC-07-350.					Yes (X) No	o ()*
Н	-		_			n the CAM protocol(Yes () No	o (X)*
I		•		•	-	list specified in the se							Yes () No	o (X)*
*A	ll negative resp	onses	s n	ust be addressed	l in an	attached laboratory	v na	rrative.						
T	41	J4					J4	L	1				.:L1.	

I, the undersigned, attest under the pains and penalties of perjury that, based upon my personal inquiry of those responsible for obtaining the information, the material contained in this analytical report is, to the best of my knowledge and belief, accurate and complete.

Signature: _____ Date: March 09, 2021
Printed Name: Laurel Stoddard Position: Laboratory Director

185 Frances Avenue, Cranston, RI 02910-2211 Tel: 401-461-

Tel: 401-461-7181 Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Client Project ID: MEC - 131 Morse St Foxborough MA

Client Sample ID: PX-1 Date Sampled: 02/24/21 14:00

Percent Solids: 90 Initial Volume: 24.5 Final Volume: 1

Surrogate: 2-Fluorobiphenyl

Surrogate: O-Terphenyl

Extraction Method: 3546

ESS Laboratory Work Order: 21C0073 ESS Laboratory Sample ID: 21C0073-01

Sample Matrix: Soil Units: mg/kg dry

Prepared: 3/2/21 16:35

MADEP-EPH Extractable Petroleum Hydrocarbons

Analyte	Results (MRL)	<u>MDL</u>	Method	<u>Limit</u>	$\frac{\mathbf{DF}}{2}$	Analys		Sequence	Batch
C9-C18 Aliphatics1	417 (33.9)		MADEP-EPH		2	AMF	03/04/21 21:42	D1C0089	DC10202
C19-C36 Aliphatics1	512 (33.9)		MADEP-EPH		2	AMF	03/04/21 21:42	D1C0089	DC10202
C11-C22 Unadjusted Aromatics1	276 (16.9)		EPH8270		1	AMF	03/04/21 8:43	D1C0070	DC10202
C11-C22 Aromatics1,2	276 (16.9)		EPH8270			AMF	03/04/21 8:43		[CALC]
		%Recovery	Qualifier	Limits					
Surrogate: 1-Chlorooctadecane		61 %		40-140					
Surrogate: 2-Bromonaphthalene		98 %		40-140					

40-140

40-140

96 %

61 %

185 Frances Avenue, Cranston, RI 02910-2211

2211 Tel: 401-461-7181

Dependability • Quality

Fax: 401-461-4486

◆ Service

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Client Project ID: MEC - 131 Morse St Foxborough MA

Client Sample ID: PX-2 Date Sampled: 02/24/21 14:05

Percent Solids: 97 Initial Volume: 24.7 Final Volume: 1

Surrogate: O-Terphenyl

Extraction Method: 3546

ESS Laboratory Work Order: 21C0073 ESS Laboratory Sample ID: 21C0073-02

Sample Matrix: Soil Units: mg/kg dry

Prepared: 3/2/21 16:35

MADEP-EPH Extractable Petroleum Hydrocarbons

Analyte	Results (MRL)	MDL	Method	<u>Limit</u>	<u>DF</u>	Analyst	Analyzed	Sequence	Batch
C9-C18 Aliphatics1	41.5 (15.7)		MADEP-EPH		1	AMF	03/03/21 17:19	D1C0058	DC10202
C19-C36 Aliphatics1	66.8 (15.7)		MADEP-EPH		1	AMF	03/03/21 17:19	D1C0058	DC10202
C11-C22 Unadjusted Aromatics1	47.4 (15.7)		EPH8270		1	AMF	03/04/21 15:52	D1C0070	DC10202
C11-C22 Aromatics1,2	46.9 (15.7)		EPH8270			AMF	03/04/21 15:52		[CALC]
		%Recovery	Qualifier	Limits					
Surrogate: 1-Chlorooctadecane		<i>56</i> %		40-140					
Surrogate: 2-Bromonaphthalene		103 %		40-140					
Surrogate: 2-Fluorobiphenyl		99 %		40-140					

40-140

84 %

185 Frances Avenue, Cranston, RI 02910-2211

2211 Tel: 401-461-7181

Dependability • Quality

Fax: 401-461-4486

◆ Service

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Client Project ID: MEC - 131 Morse St Foxborough MA

Client Sample ID: PX-3 Date Sampled: 02/24/21 14:10

Percent Solids: 95 Initial Volume: 24.4 Final Volume: 1

Extraction Method: 3546

ESS Laboratory Work Order: 21C0073 ESS Laboratory Sample ID: 21C0073-03

Sample Matrix: Soil Units: mg/kg dry

Prepared: 3/2/21 16:35

MADEP-EPH Extractable Petroleum Hydrocarbons

Analyte C9-C18 Aliphatics1	Results (MRL) ND (16.2)	<u>MDL</u>	Method MADEP-EPH	<u>Limit</u>	<u>DF</u>	Analyst AMF	Analyzed 03/03/21 18:07	Sequence D1C0058	Batch DC10202
C19-C36 Aliphatics1	20.3 (16.2)		MADEP-EPH		1	AMF	03/03/21 18:07	D1C0058	DC10202
C11-C22 Unadjusted Aromatics1	177 (16.2)		EPH8270		1	AMF	03/04/21 16:28	D1C0070	DC10202
C11-C22 Aromatics1,2	135 (16.2)		EPH8270			AMF	03/05/21 19:22		[CALC]
		%Recovery	Qualifier	Limits					
Surrogate: 1-Chlorooctadecane		52 %		40-140					
Surrogate: 2-Bromonaphthalene		103 %		40-140					
Surrogate: 2-Fluorobiphenyl		99 %		40-140					
Surrogate: O-Terphenyl		70 %		40-140					

40-140

70 %

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Client Project ID: MEC - 131 Morse St Foxborough MA

Client Sample ID: PX-4 Date Sampled: 02/24/21 14:15

Percent Solids: 93 Initial Volume: 24.2 Final Volume: 1

Extraction Method: 3546

ESS Laboratory Work Order: 21C0073 ESS Laboratory Sample ID: 21C0073-04

Sample Matrix: Soil Units: mg/kg dry

Prepared: 3/2/21 16:35

MADEP-EPH Extractable Petroleum Hydrocarbons

<u>Analyte</u>	Results (MRL)	MDL	Method	<u>Limit</u>	<u>DF</u>	Analyst	Analyzed	Sequence	Batch
C9-C18 Aliphatics1	5670 (334)		MADEP-EPH		20	AMF	03/04/21 22:31	D1C0089	DC10202
C19-C36 Aliphatics1	7490 (334)		MADEP-EPH		20	AMF	03/04/21 22:31	D1C0089	DC10202
C11-C22 Unadjusted Aromatics1	5770 (334)		EPH8270		20	AMF	03/05/21 21:09	D1C0105	DC10202
C11-C22 Aromatics1,2	5740 (334)		EPH8270			AMF	03/05/21 21:09		[CALC]
		%Recovery	Qualifier	Limits					
Surrogate: 1-Chlorooctadecane		%	SD	40-140					
Surrogate: 2-Bromonaphthalene		114 %		40-140					
Surrogate: 2-Fluorobiphenyl		113 %		40-140					
Surrogate: O-Terphenyl		97 04		40-140					

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Client Project ID: MEC - 131 Morse St Foxborough MA

Client Sample ID: PX-5 Date Sampled: 02/24/21 14:20

Percent Solids: 83 Initial Volume: 24.4 Final Volume: 1

Extraction Method: 3546

ESS Laboratory Work Order: 21C0073 ESS Laboratory Sample ID: 21C0073-05

Sample Matrix: Soil Units: mg/kg dry

Prepared: 3/2/21 16:35

MADEP-EPH Extractable Petroleum Hydrocarbons

<u>Analyte</u>	Results (MRL)	MDL	Method	<u>Limit</u>	<u>DF</u>	Analyst	Analyzed	Sequence	Batch
C9-C18 Aliphatics1	7170 (370)		MADEP-EPH		20	AMF	03/04/21 23:19	D1C0089	DC10202
C19-C36 Aliphatics1	8980 (370)		MADEP-EPH		20	AMF	03/04/21 23:19	D1C0089	DC10202
C11-C22 Unadjusted Aromatics1	7080 (370)		EPH8270		20	AMF	03/05/21 22:21	D1C0105	DC10202
C11-C22 Aromatics1,2	7030 (370)		EPH8270			AMF	03/05/21 22:21		[CALC]
		%Recovery	Qualifier	Limits					
Surrogate: 1-Chlorooctadecane		%	SD	40-140					
Surrogate: 2-Bromonaphthalene		121 %		40-140					
Surrogate: 2-Fluorobiphenyl		112 %		40-140					
Surrogate: O-Terphenyl		95 %		AO-1AO					

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Client Project ID: MEC - 131 Morse St Foxborough MA

Client Sample ID: PX-6 Date Sampled: 02/24/21 14:25

Percent Solids: 95 Initial Volume: 24.3 Final Volume: 1

Extraction Method: 3546

ESS Laboratory Work Order: 21C0073 ESS Laboratory Sample ID: 21C0073-06

Sample Matrix: Soil Units: mg/kg dry

Prepared: 3/2/21 16:35

MADEP-EPH Extractable Petroleum Hydrocarbons

Analyte C9-C18 Aliphatics1	Results (MRL) 3990 (326)	MDL	Method MADEP-EPH	<u>Limit</u>	<u>DF</u> 20	Analyst AMF	Analyzed 03/05/21 0:08	Sequence D1C0089	Batch DC10202
C19-C36 Aliphatics1	5260 (326)		MADEP-EPH		20	AMF	03/05/21 0:08	D1C0089	DC10202
C11-C22 Unadjusted Aromatics1	2310 (163)		EPH8270		10	AMF	03/09/21 11:28	D1C0148	DC10202
C11-C22 Aromatics1,2	2310 (163)		EPH8270			AMF	03/09/21 11:28		[CALC]
		%Recovery	Qualifier	Limits					
Surrogate: 1-Chlorooctadecane		%	SD	40-140					
Surrogate: 2-Bromonaphthalene		85 %		40-140					
Surrogate: 2-Fluorobiphenyl		81 %		40-140					
Surrogate: O-Terphenyl		60 %		40-140					

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Client Project ID: MEC - 131 Morse St Foxborough MA ESS Laboratory Work Order: 21C0073

Quality Control Data

				Spike	Source		%REC		RPD	
Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier

MADEP-EPH Extractable Petroleum Hydrocarbons

Batch DC10202 - 3546							
Blank							
C19-C36 Aliphatics1	ND	15.0	mg/kg wet				
C9-C18 Aliphatics1	ND	15.0	mg/kg wet				
Decane (C10)	ND	0.5	mg/kg wet				
Docosane (C22)	ND	0.5	mg/kg wet				
Dodecane (C12)	ND	0.5	mg/kg wet				
Eicosane (C20)	ND	0.5	mg/kg wet				
Hexacosane (C26)	ND	0.5	mg/kg wet				
Hexadecane (C16)	ND	0.5	mg/kg wet				
Hexatriacontane (C36)	ND	0.5	mg/kg wet				
Nonadecane (C19)	ND	0.5	mg/kg wet				
Nonane (C9)	ND	0.5	mg/kg wet				
Octacosane (C28)	ND	0.5	mg/kg wet				
Octadecane (C18)	ND	0.5	mg/kg wet				
Tetracosane (C24)	ND	0.5	mg/kg wet				
Tetradecane (C14)	ND	0.5	mg/kg wet				
Triacontane (C30)	ND	0.5	mg/kg wet				
Surrogate: 1-Chlorooctadecane	1.40		mg/kg wet	2.000	70	40-140	
Blank							
2-Methylnaphthalene	ND	0.20	mg/kg wet				
cenaphthene	ND	0.40	mg/kg wet				
Acenaphthylene	ND	0.20	mg/kg wet				
Anthracene	ND	0.40	mg/kg wet				
Benzo(a)anthracene	ND	0.40	mg/kg wet				
Benzo(a)pyrene	ND	0.40	mg/kg wet				
Benzo(b)fluoranthene	ND	0.40	mg/kg wet				
Benzo(g,h,i)perylene	ND	0.40	mg/kg wet				
Benzo(k)fluoranthene	ND	0.40	mg/kg wet				
C11-C22 Unadjusted Aromatics1	ND	15.0	mg/kg wet				
Chrysene	ND	0.40	mg/kg wet				
Dibenzo(a,h)Anthracene	ND	0.20	mg/kg wet				
Fluoranthene	ND	0.40	mg/kg wet				
Fluorene	ND	0.40	mg/kg wet				
Indeno(1,2,3-cd)Pyrene	ND	0.40	mg/kg wet				
Naphthalene	ND	0.40	mg/kg wet				
Phenanthrene	ND	0.40	mg/kg wet				
Pyrene	ND	0.40	mg/kg wet				
Surrogate: 2-Bromonaphthalene	1.35		mg/kg wet	2.000	68	40-140	
Surrogate: 2-Fluorobiphenyl	1.45		mg/kg wet	2.000	<i>73</i>	40-140	
Surrogate: O-Terphenyl	1.73		mg/kg wet	2.000	87	40-140	
LCS							
C19-C36 Aliphatics1	13.3	15.0	mg/kg wet	16.00	83	40-140	
C9-C18 Aliphatics1	7.8	15.0	mg/kg wet	12.00	65	40-140	

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Quality

Dependability

Fax: 401-461-4486 ◆ Service

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Client Project ID: MEC - 131 Morse St Foxborough MA ESS Laboratory Work Order: 21C0073

Quality Control Data

				Spike	Source		%REC		RPD	
Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier
	MAD	EP-EPH Ext	ractable Petro	oleum Hy	/drocarbo	ns				
Batch DC10202 - 3546										
Decane (C10)	0.9	0.5	mg/kg wet	2.000		47	40-140			
Docosane (C22)	1.5	0.5	mg/kg wet	2.000		75	40-140			
Dodecane (C12)	1.1	0.5	mg/kg wet	2.000		53	40-140			
Eicosane (C20)	1.5	0.5	mg/kg wet	2.000		75	40-140			
Hexacosane (C26)	1.5	0.5	mg/kg wet	2.000		75	40-140			
Hexadecane (C16)	1.4	0.5	mg/kg wet	2.000		68	40-140			
Hexatriacontane (C36)	1.5	0.5	mg/kg wet	2.000		77	40-140			
Nonadecane (C19)	1.5	0.5	mg/kg wet	2.000		74	40-140			
Nonane (C9)	0.8	0.5	mg/kg wet	2.000		40	30-140			
Octacosane (C28)	1.5	0.5	mg/kg wet	2.000		76	40-140			
Octadecane (C18)	1.4	0.5	mg/kg wet	2.000		72	40-140			
Tetracosane (C24)	1.5	0.5	mg/kg wet	2.000		75	40-140			
Tetradecane (C14)	1.2	0.5	mg/kg wet	2.000		61	40-140			
Triacontane (C30)	1.5	0.5	mg/kg wet	2.000		75	40-140			
Surrogate: 1-Chlorooctadecane	1.44		mg/kg wet	2.000		72	40-140			
LCS										
2-Methylnaphthalene	1.13	0.20	mg/kg wet	2.000		57	40-140			
Acenaphthene	1.49	0.40	mg/kg wet	2.000		75	40-140			
Acenaphthylene	1.30	0.20	mg/kg wet	2.000		65	40-140			
Anthracene	1.81	0.40	mg/kg wet	2.000		91	40-140			
Benzo(a)anthracene	1.52	0.40	mg/kg wet	2.000		76	40-140			
Benzo(a)pyrene	1.76	0.40	mg/kg wet	2.000		88	40-140			
Benzo(b)fluoranthene	1.59	0.40	mg/kg wet	2.000		79	40-140			
Benzo(g,h,i)perylene	1.79	0.40	mg/kg wet	2.000		90	40-140			
Benzo(k)fluoranthene	2.03	0.40	mg/kg wet	2.000		102	40-140			
C11-C22 Unadjusted Aromatics1	28.0	15.0	mg/kg wet	34.00		82	40-140			
Chrysene	1.97	0.40	mg/kg wet	2.000		98	40-140			
Dibenzo(a,h)Anthracene	1.76	0.20	mg/kg wet	2.000		88	40-140			
Fluoranthene	1.60	0.40	mg/kg wet	2.000		80	40-140			
Fluorene	1.33	0.40	mg/kg wet	2.000		66	40-140			
Indeno(1,2,3-cd)Pyrene	1.66	0.40	mg/kg wet	2.000		83	40-140			
Naphthalene	1.02	0.40	mg/kg wet	2.000		51	40-140			
Phenanthrene	1.43	0.40	mg/kg wet	2.000		71	40-140			
Pyrene	1.76	0.40	mg/kg wet	2.000		88	40-140			
Surrogate: 2-Bromonaphthalene	1.25		mg/kg wet	2.000		63	40-140			
Surrogate: 2-Fluorobiphenyl	1.58		mg/kg wet	2.000		<i>79</i>	40-140			
Surrogate: O-Terphenyl	1.81		mg/kg wet	2.000		91	40-140			
LCS										
2-Methylnaphthalene Breakthrough Naphthalene Breakthrough	0.0 0.0		% %				0-5 0-5			
LCS Dup										
C19-C36 Aliphatics1	13.1	15.0	mg/kg wet	16.00		82	40-140	1	25	
C9-C18 Aliphatics1	7.3	15.0	mg/kg wet	12.00		61	40-140	7	25	

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Client Project ID: MEC - 131 Morse St Foxborough MA ESS Laboratory Work Order: 21C0073

Quality Control Data

Analyte	Result	MRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qualifier
	MAD	EP-EPH Exti	ractable Petro	oleum Hy	/drocarbo	ns				
Batch DC10202 - 3546										
Decane (C10)	0.9	0.5	mg/kg wet	2.000		45	40-140	5	25	
Docosane (C22)	1.5	0.5	mg/kg wet	2.000		76	40-140	0.3	25	
Dodecane (C12)	1.0	0.5	mg/kg wet	2.000		50	40-140	6	25	
Eicosane (C20)	1.5	0.5	mg/kg wet	2.000		74	40-140	0.1	25	
Hexacosane (C26)	1.5	0.5	mg/kg wet	2.000		75	40-140	0.2	25	
Hexadecane (C16)	1.3	0.5	mg/kg wet	2.000		66	40-140	3	25	
Hexatriacontane (C36)	1.5	0.5	mg/kg wet	2.000		77	40-140	0.7	25	
Nonadecane (C19)	1.5	0.5	mg/kg wet	2.000		74	40-140	0.3	25	
Nonane (C9)	0.8	0.5	mg/kg wet	2.000		38	30-140	5	25	
Octacosane (C28)	1.5	0.5	mg/kg wet	2.000		76	40-140	0.3	25	
Octadecane (C18)	1.4	0.5	mg/kg wet	2.000		72 	40-140	0.4	25	
Tetracosane (C24)	1.5	0.5	mg/kg wet	2.000		75 	40-140	0.1	25	
Tetradecane (C14)	1.1	0.5	mg/kg wet	2.000		57	40-140	6	25	
Friacontane (C30)	1.5	0.5	mg/kg wet	2.000		75	40-140	0.2	25	
Surrogate: 1-Chlorooctadecane	1.41		mg/kg wet	2.000		71	40-140			
.CS Dup										
2-Methylnaphthalene	1.03	0.20	mg/kg wet	2.000		52	40-140	9	30	
Acenaphthene	1.53	0.40	mg/kg wet	2.000		77	40-140	3	30	
Acenaphthylene	1.17	0.20	mg/kg wet	2.000		58	40-140	11	30	
Anthracene	1.91	0.40	mg/kg wet	2.000		95	40-140	5	30	
Benzo(a)anthracene	1.59	0.40	mg/kg wet	2.000		79	40-140	4	30	
Benzo(a)pyrene	1.84	0.40	mg/kg wet	2.000		92	40-140	4	30	
Benzo(b)fluoranthene	1.59	0.40	mg/kg wet	2.000		79	40-140	0.08	30	
Benzo(g,h,i)perylene	1.94	0.40	mg/kg wet	2.000		97	40-140	8	30	
Benzo(k)fluoranthene	2.11	0.40	mg/kg wet	2.000		105	40-140	4	30	
C11-C22 Unadjusted Aromatics1	29.1	15.0	mg/kg wet	34.00		86	40-140	4	25	
Chrysene	2.09	0.40	mg/kg wet	2.000		104	40-140	6	30	
Dibenzo(a,h)Anthracene	1.82	0.20	mg/kg wet	2.000		91	40-140	4	30	
Fluoranthene	1.68	0.40	mg/kg wet	2.000		84	40-140	5	30	
Fluorene	1.37	0.40	mg/kg wet	2.000		69	40-140	3	30	
Indeno(1,2,3-cd)Pyrene	1.71	0.40	mg/kg wet	2.000		85	40-140	3	30	
Naphthalene	0.99	0.40	mg/kg wet	2.000		50	40-140	3	30	
Phenanthrene	1.47	0.40	mg/kg wet	2.000		74	40-140	3	30	
Pyrene	1.87	0.40	mg/kg wet	2.000		94	40-140	6	30	
Surrogate: 2-Bromonaphthalene	1.27		mg/kg wet	2.000		63	40-140			
Surrogate: 2-Fluorobiphenyl	1.52		mg/kg wet	2.000		76	40-140			
Surrogate: O-Terphenyl	1.89		mg/kg wet	2.000		95	40-140			
LCS Dup										
2-Methylnaphthalene Breakthrough	0.0		%				0-5		200	
Naphthalene Breakthrough	0.0		%				0-5		200	

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Client Project ID: MEC - 131 Morse St Foxborough MA ESS Laboratory Work Order: 21C0073

Notes and Definitions

U	Analyte included in the analysis, but not detected
SD	Surrogate recovery(ies) diluted below the MRL (SD).

D Diluted.

F/V

CD+ Continuing Calibration %Diff/Drift is above control limit (CD+).

ND Analyte NOT DETECTED at or above the MRL (LOQ), LOD for DoD Reports, MDL for J-Flagged Analytes

dry Sample results reported on a dry weight basis

RPD Relative Percent Difference
MDL Method Detection Limit
MRL Method Reporting Limit
LOD Limit of Detection
LOQ Limit of Quantitation
DL Detection Limit
I/V Initial Volume

Final Volume

§ Subcontracted analysis; see attached report

Range result excludes concentrations of surrogates and/or internal standards eluting in that range.

Range result excludes concentrations of target analytes eluting in that range.
 Range result excludes the concentration of the C9-C10 aromatic range.

Avg B 1 1 1 1 1 1

Avg Results reported as a mathematical average.

NR No Recovery

[CALC] Calculated Analyte

SUB Subcontracted analysis; see attached report

RL Reporting Limit

EDL Estimated Detection Limit
MF Membrane Filtration
MPN Most Probably Number
TNTC Too numerous to Count
CFU Colony Forming Units

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Client Project ID: MEC - 131 Morse St Foxborough MA ESS Laboratory Work Order: 21C0073

ESS LABORATORY CERTIFICATIONS AND ACCREDITATIONS

ENVIRONMENTAL

Rhode Island Potable and Non Potable Water: LAI00179 http://www.health.ri.gov/find/labs/analytical/ESS.pdf

Connecticut Potable and Non Potable Water, Solid and Hazardous Waste: PH-0750 http://www.ct.gov/dph/lib/dph/environmental health/environmental laboratories/pdf/OutofStateCommercialLaboratories.pdf

Maine Potable and Non Potable Water, and Solid and Hazardous Waste: RI00002 http://www.maine.gov/dhhs/mecdc/environmental-health/dwp/partners/labCert.shtml

Massachusetts Potable and Non Potable Water: M-RI002 http://public.dep.state.ma.us/Labcert/Labcert.aspx

New Hampshire (NELAP accredited) Potable and Non Potable Water, Solid and Hazardous Waste: 2424 http://des.nh.gov/organization/divisions/water/dwgb/nhelap/index.htm

New York (NELAP accredited) Non Potable Water, Solid and Hazardous Waste: 11313 http://www.wadsworth.org/labcert/elap/comm.html

New Jersey (NELAP accredited) Non Potable Water, Solid and Hazardous Waste: RI006 http://datamine2.state.nj.us/DEP OPRA/OpraMain/pi main?mode=pi by site&sort order=PI NAMEA&Select+a+Site:=58715

United States Department of Agriculture Soil Permit: P330-12-00139

Pennsylvania: 68-01752

 $\underline{http://www.dep.pa.gov/Business/Other Programs/Labs/Pages/Laboratory-Accreditation-Program.aspx}$

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

Service

ESS Laboratory Sample and Cooler Receipt Checklist

Client		Tighe & Bor	nd - KPB/TB	•	ESS P	roject ID:	21C0073	
Olioni.		rigino di Boi			Date R	eceived:	3/2/2021	
Shipped/De	elivered Via:		ESS Courier			ue Date:	3/9/2021	
					Days to	r Project:	5 Day	
	anifest prese			No	6. Does COC n	natch bottles?		Yes
74, 110					7. Is COC com	plete and correct?		Yes
2. Were cu	stody seals p	resent?		No	8. Were sampl	es received intact?		Yes
3. Is radiation	on count <10	0 CPM?		Yes				
			-		9. Were labs i	nformed about <u>sh</u> e	ort holds & rushes?	Yes / No (N/
	er Present? 0.4	Iced with:	lce	Yes	10. Were any	analyses received	outside of hold time?	Yes (No
5. Was CO	C signed and	d dated by c	ient?	Yes				
	ocontracting i Sample IDs: Analysis: TAT:		Yes	\bigcup		s received? in aqueous VOAs? anol cover soil com		Yes No Yes / No Yes / No / NA
a. If metals b. Low Lev	samples pro preserved u el VOA vials ceiving Notes	pon receipt: frozen:		Yes No Date: Date:	Time:Time:		By:By:	
	re a need to		oject Manage client?	r? Date:	Yes / No Yes No Time:		Ву:	
Sample	Container	Proper	Air Bubbles	Sufficient	Container Type	Preservative		yanide and 608
Number	1D	Container	Present	Volume			Pesti	
1	139689	Yes	N/A	Yes	8 oz jar	NP		
2	139690	Yes	N/A	Yes	8 oz jar	NP		
3	139691	Yes	N/A	Yes	8 oz jar	NP		
4	139692	Yes	N/A	Yes	8 oz jar	NP		
5	139693	Yes	N/A	Yes	8 oz jar	NP		

2nd Review

6

Were all containers scanned into storage/lab?

Are barcode labels on correct containers?

Are all Flashpoint stickers attached/container ID # circled?

Yes

N/A

Yes

Are all Hex Chrome stickers attached?

139694

Are all QC stickers attached?

Are VOA stickers attached if bubbles noted?

8 oz jar

Yes / No //N Yes / No / NA Yes / No NA Yes / No

NΡ

ESS Laboratory Sample and Cooler Receipt Checklist

Client:	Tighe & Bond - KPB/TB	_	ESS Project ID:	21C0073	
	O Ma	_	Date Received:	3/2/2021	
Ву:	LIM Very tarre	Date & Time:	3/2/21 15	01	
Reviewed			1	^	
By:		_ Date & Time:	<u> 3721</u>	1609	

185 Frances Avenue	CHAIN OF CUS	TODY	ESS Lab# 210	mo73	Page / of /
Cranston, RI 02921	Turn Time □>5 反 5 □ 4 □ 3	☐ 2 ☐ 1 ☐ Same Day	ELECTRONIC	DELIVERABLES (I	Final Reports are PDF)
Phone: 401-461-7181	Regulatory State: Criteria:		Limit Checker	☐ State Forms	□ EQuIS
Fax: 401-461-4486	Is this project for any of the	following?:	☑ Excel	☐ Hard Copy	Enviro Data
www.esslaboratory.com	☐ CT RCP 🔯 MA MCP ☐ RGP	☐ Permit ☐ 401 WQ	☐ CLP-Like Package	☐ Other (Specify)	→
CLIENT INFORMATION	PROJECT INFORM		REQ	UESTED ANAL	YSES
Client: Tighe + Bond	Project Name: 131 Molse St. Fox	Client Client			
Address: 120 Front St	Project Location: 4 /	acknowledges			i tall
Warrester MA 01608	Project Number: <u>N - 5067 - 094</u>	that sampling is			Total Number of Bottles
Phone:	Project Manager: Kem Links /MHHh	ew Aboutany compliant with			
Email Distribution List:	Bill to:	all EPA / State regulatory	2		
	PO#:	programs	[<u>3</u>] [3]		
	Quote#:	programs			
ESS Lab Collection Collection Sample Type ID Date Time Sample Type	Sample Matrix San	nple ID	dg		
1 2/24/21 /400 6	5 PX-1		1/		
2 1405 1	1 px-2	· · · · · · · · · · · · · · · · · · ·	$\sqrt{}$		
3 /4/0	px-3		N T		
4 1415	PX-1		X		
5 1420	PX-5		X		
6 1 1425	V Px-6		7		
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \					

		-			
Container Type: AC-Air Cassette AG-Am	nber Glass B-BOD Bottle C-Cubitainer J-Jar O-Ot	her P-Poly S-Sterile V-Vial			
Container Volume: 1-100 mL 2-2.5 gal 3-	250 mL 4-300 mL 5-500 mL 6-1L 7-VOA 8-2 oz	z 9-4 oz 10-8 oz 11-Other*			
Preservation Code: 1-Non Preserved 2-HCl 3-H2SC	04 4-HNO3 5-NaOH 6-Methanol 7-Na2S2O3 8-ZnAcc, N				
Sampled by: WW		Chain needs to be fil	led out neatly and	completely for	on time delivery.
Comments: * Please specify "Other" pro	eservative and containers types in this space		All samples submit	ted are subject to	Dissolved Filtration
			ESS Laboratory's pa		
0.40			conditi	ons.	☐ Lab Filter
Relinquished by (Signature) Date	Time Received by (Signature)	Relinquished by (Signature)	Date	Time	Received by (Signature)
7/./-	02. 1.0.1 4	Phindsont	3/2/2021	935	1 3-2-21
3/2/2071				Time	Received by (Signature)
Relinquished by (Signature) Date	Time Received by (Signature)	Relinquished by (Signature)	Date	Time	Received by (organicale)
1.6 6 261	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Matt Abraham Tighe & Bond 120 Front Street, Suite 7 Worcester, MA 01608

RE: NGrid - 131 Morse St (N-5067-084)

ESS Laboratory Work Order Number: 21L1079

This signed Certificate of Analysis is our approved release of your analytical results. These results are only representative of sample aliquots received at the laboratory. ESS Laboratory expects its clients to follow all regulatory sampling guidelines. Beginning with this page, the entire report has been paginated. This report should not be copied except in full without the approval of the laboratory. Samples will be disposed of thirty days after the final report has been delivered. If you have any questions or concerns, please feel free to call our Customer Service Department.

Laurel Stoddard

Laboratory Director

REVIEWED

By ESS Laboratory at 5:59 pm, Jan 13, 2022

Analytical Summary

The project as described above has been analyzed in accordance with the ESS Quality Assurance Plan. This plan utilizes the following methodologies: US EPA SW-846, US EPA Methods for Chemical Analysis of Water and Wastes per 40 CFR Part 136, APHA Standard Methods for the Examination of Water and Wastewater, American Society for Testing and Materials (ASTM), and other recognized methodologies. The analyses with these noted observations are in conformance to the Quality Assurance Plan. In chromatographic analysis, manual integration is frequently used instead of automated integration because it produces more accurate results.

The test results present in this report are in compliance with TNI and relative state standards, and/or client Quality Assurance Project Plans (QAPP). The laboratory has reviewed the following: Sample Preservations, Hold Times, Initial Calibrations, Continuing Calibrations, Method Blanks, Blank Spikes, Blank Spike Duplicates, Duplicates, Matrix Spikes, Matrix Spike Duplicates, Surrogates and Internal Standards. Any results which were found to be outside of the recommended ranges stated in our SOPs will be noted in the Project Narrative.

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Client Project ID: NGrid - 131 Morse St ESS Laboratory Work Order: 21L1079

SAMPLE RECEIPT

The following samples were received on December 30, 2021 for the analyses specified on the enclosed Chain of Custody Record.

To achieve CAM compliance for MCP data, ESS Laboratory has reviewed all QA/QC Requirements and Performance Standards listed in each method. Holding times and preservation have also been reviewed. All CAM requirements have been performed and achieved unless noted in the project narrative.

Each method has been set-up in the laboratory to reach required MCP standards. The methods for aqueous VOA and Soil Methanol VOA have known limitations for certain analytes. The regulatory standards may not be achieved due to these In addition, for all methods, matrix interferences, dilutions, and %Solids may elevate method reporting limits ESS Laboratory can provide, upon request, a Limit Checker (regulatory standard comparison above regulatory standards. spreadsheet) electronic deliverable which will highlight these exceedances.

Question I: All samples for EPH were analyzed for a subset of the required MCP list per the client's request.

GC-FID Fingerprint

The sample produced a chromatogram that contained material eluting in the mid to high molecular weight ranges of the chromatogram. Examples of similar material eluting in these ranges are hydraulic, transformer, motor and lubricating oils.

Lab Number	Sample Name	<u>Matrix</u>	<u>Analysis</u>
21L1079-01	B-1 2.5-5ft	Soil	EPH8270, MADEP-EPH
21L1079-02	B-2 2.5-5ft	Soil	EPH8270, MADEP-EPH
21L1079-03	B-2 5-7ft	Soil	EPH8270, MADEP-EPH
21L1079-04	B-3 2-5ft	Soil	EPH8270, MADEP-EPH, SUB
21L1079-05	B-3 5-7ft	Soil	8100M, EPH8270, MADEP-EPH

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Client Project ID: NGrid - 131 Morse St ESS Laboratory Work Order: 21L1079

PROJECT NARRATIVE

No unusual observations noted.

End of Project Narrative.

DATA USABILITY LINKS

To ensure you are viewing the most current version of the documents below, please clear your internet cookies for www.ESSLaboratory.com. Consult your IT Support personnel for information on how to clear your internet cookies.

Definitions of Quality Control Parameters

Semivolatile Organics Internal Standard Information

Semivolatile Organics Surrogate Information

Volatile Organics Internal Standard Information

Volatile Organics Surrogate Information

EPH and VPH Alkane Lists

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Client Project ID: NGrid - 131 Morse St ESS Laboratory Work Order: 21L1079

CURRENT SW-846 METHODOLOGY VERSIONS

Analytical Methods

1010A - Flashpoint

6010C - ICP

6020A - ICP MS

7010 - Graphite Furnace

7196A - Hexavalent Chromium

7470A - Aqueous Mercury

7471B - Solid Mercury

8011 - EDB/DBCP/TCP

8015C - GRO/DRO

8081B - Pesticides

8082A - PCB

8100M - TPH

8151A - Herbicides

8260B - VOA

8270D - SVOA

8270D SIM - SVOA Low Level

9014 - Cyanide

9038 - Sulfate

9040C - Aqueous pH

9045D - Solid pH (Corrosivity)

9050A - Specific Conductance

9056A - Anions (IC)

9060A - TOC

9095B - Paint Filter

MADEP 04-1.1 - EPH

MADEP 18-2.1 - VPH

Prep Methods

3005A - Aqueous ICP Digestion

3020A - Aqueous Graphite Furnace / ICP MS Digestion

3050B - Solid ICP / Graphite Furnace / ICP MS Digestion

3060A - Solid Hexavalent Chromium Digestion

3510C - Separatory Funnel Extraction

3520C - Liquid / Liquid Extraction

3540C - Manual Soxhlet Extraction

3541 - Automated Soxhlet Extraction

3546 - Microwave Extraction

3580A - Waste Dilution

5030B - Aqueous Purge and Trap

5030C - Aqueous Purge and Trap

5035A - Solid Purge and Trap

SW846 Reactivity Methods 7.3.3.2 (Reactive Cyanide) and 7.3.4.1 (Reactive Sulfide) have been withdrawn by EPA. These methods are reported per client request and are not NELAP accredited.

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Client Project ID: NGrid - 131 Morse St ESS Laboratory Work Order: 21L1079

MassDEP Analytical Protocol Certification Form

	MADEP F	RTN:			<u> </u>		
This	form provides	certif	fication for the follo	wing data set: 21L1079-01 t	hrough 21L1079-05		
Mat	rices: () Grou	nd W	/ater/Surface Water	(x) Soil/Sediment	() Drinking Water	() Air () Other:	
CAl	M Protocol (ch	ieck a	all that apply below	7):			
()	8260 VOC CAM II A	() 7470/7471 Hg CAM III B	() MassDEP VPH (GC/PID/FID) CAM IV A	() 8082 PCB CAM V A	() 9014 Total Cyanide/PAC CAM VI A	() 6860 Perchlorate CAM VIII B
()	8270 SVOC CAM II B	() 7010 Metals CAM III C	() MassDEP VPH (GC/MS) CAM IV C	() 8081 Pesticides CAM V B	() 7196 Hex Cr CAM VI B	() MassDEP APH CAM IX A
()	6010 Metals CAM III A	() 6020 Metals CAM III D	(X) MassDEP EPH CAM IV B	() 8151 Herbicides CAM V C	() Explosives CAM VIII A	() TO-15 VOC CAM IX B
			Affirmative respo	onses to questions A throug	gh F are required for "P	resumptive Certainty'' s	tatus
A	-			n consistent with those describe field or laboratory, and pre			Yes (x) No ()
В	•	_		sociated QC requirements s	· ·	_	Yes (x) No ()
C	Were all requir			analytical response actions nce standard non-conformar	•	AM protocol(s)	Yes (X) No ()
D	Does the labora	atory	report comply with	all the reporting requirements these for the Acquisition and R	ts specified in the CAM V	- ·	Yes (x) No $($
E	VPH, EPH, AF	PH an	d TO-15 only: a. Wa	as each method conducted was ignificant modifications).			Yes () No ()
			* *	the complete analyte list rep	orted for each method?		Yes () No ()
F	Were all applic	able	CAM protocol QC a	and performance standard no No" responses to Questions	on-conformances identified	and evaluated	Yes (X) No ()
			-	Questions G, H and I belo	- ·		
G	<u>Data User Note</u>	: Dat	a that achieve ''Pres	CAM reporting limits speci- cumptive Certainty" status mod ad in 310 CMR 40. 1056 (2)(k	y not necessarily meet the d		Yes (x) No ()*
Н	•		•	cified in the CAM protocol(Yes (x) No ()*
I			-	nalyte list specified in the se			Yes () No (X)*
*All		_	-	d in an attached laborator	- ' '		, , , ,

I, the undersigned, attest under the pains and penalties of perjury that, based upon my personal inquiry of those responsible for obtaining the information, the material contained in this analytical report is, to the best of my knowledge and belief, accurate and complete.

Signature: Date: January 13, 2022 Printed Name: Laurel Stoddard Position: <u>Laboratory Director</u>

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486 Service

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Client Project ID: NGrid - 131 Morse St

Client Sample ID: B-1 2.5-5ft

Date Sampled: 12/29/21 09:40

Percent Solids: 82 Initial Volume: 25.2 Final Volume: 1

Extraction Method: 3546

ESS Laboratory Work Order: 21L1079 ESS Laboratory Sample ID: 21L1079-01

Sample Matrix: Soil Units: mg/kg dry

Prepared: 1/3/22 17:00

MADEP-EPH Extractable Petroleum Hydrocarbons

Analyte C9-C18 Aliphatics1	Results (MRL) ND (18.1)	MDL	Method MADEP-EPH	<u>Limit</u>	<u>DF</u>	Analysi MJV	<u>Analyzed</u> 01/05/22 11:50	Sequence D2A0058	Batch DA20331
C19-C36 Aliphatics1	ND (18.1) ND (18.1)		MADEP-EPH		1	MJV	01/05/22 11:50	D2A0058	DA20331 DA20331
C11-C22 Unadjusted Aromatics1	ND (18.1)		EPH8270		1	MJV	01/05/22 13:30	D2A0042	DA20331
C11-C22 Aromatics1,2	ND (18.1)		EPH8270			MJV	01/05/22 13:30		[CALC]
		%Recovery	Qualifier	Limits					
Surrogate: 1-Chlorooctadecane		73 %		40-140					
Surrogate: 2-Bromonaphthalene		87 %		40-140					
Surrogate: 2-Fluorobiphenyl		83 %		40-140					
Surrogate: O-Terphenyl		72 %		40-140					

Service

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Client Project ID: NGrid - 131 Morse St ESS Laboratory Work Order: 21L1079
Client Sample ID: B-2 2.5-5ft ESS Laboratory Sample ID: 21L1079-02

82 %

Date Sampled: 12/29/21 09:20 Sample Matrix: Soil
Percent Solids: 83 Units: mg/kg dry

Percent Solids: 83 Initial Volume: 24.5 Final Volume: 1

Surrogate: O-Terphenyl

Extraction Method: 3546

Prepared: 1/3/22 17:00

MADEP-EPH Extractable Petroleum Hydrocarbons

Analyte	Results (MRL)	MDL	Method	<u>Limit</u>	<u>DF</u>	Analyst		Sequence	Batch
C9-C18 Aliphatics1	ND (18.4)		MADEP-EPH		1	MJV	01/05/22 12:25	D2A0058	DA20331
C19-C36 Aliphatics1	ND (18.4)		MADEP-EPH		1	MJV	01/05/22 12:25	D2A0058	DA20331
C11-C22 Unadjusted Aromatics1	ND (18.4)		EPH8270		1	MJV	01/05/22 14:07	D2A0042	DA20331
C11-C22 Aromatics1,2	ND (18.4)		EPH8270			MJV	01/05/22 14:07		[CALC]
		%Recovery	Qualifier	Limits					
Surrogate: 1-Chlorooctadecane		81 %		40-140					
Surrogate: 2-Bromonaphthalene		89 %		40-140					
Surrogate: 2-Fluorobiphenyl		80 %		40-140					

40-140

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Client Project ID: NGrid - 131 Morse St

Client Sample ID: B-2 5-7ft Date Sampled: 12/29/21 09:48

Percent Solids: 73 Initial Volume: 24.3 Final Volume: 1

Extraction Method: 3546

ESS Laboratory Work Order: 21L1079 ESS Laboratory Sample ID: 21L1079-03

Sample Matrix: Soil Units: mg/kg dry

Prepared: 1/3/22 17:00

MADEP-EPH Extractable Petroleum Hydrocarbons

Analyte C9-C18 Aliphatics1	Results (MRL) ND (21.3)	MDL	Method MADEP-EPH	<u>Limit</u>	<u>DF</u>	Analyst MJV	Analyzed 01/05/22 13:00	Sequence D2A0058	Batch DA20331
C19-C36 Aliphatics1	ND (21.3)		MADEP-EPH		1	MJV	01/05/22 13:00	D2A0058	DA20331
C11-C22 Unadjusted Aromatics1	214 (21.3)		EPH8270		1	MJV	01/06/22 5:09	D2A0042	DA20331
C11-C22 Aromatics1,2	151 (21.3)		EPH8270			MJV	01/06/22 22:16		[CALC]
		%Recovery	Qualifier	Limits					
Surrogate: 1-Chlorooctadecane		71 %		40-140					
Surrogate: 2-Bromonaphthalene		78 %		40-140					
Surrogate: 2-Fluorobiphenyl		76 %		40-140					
Surrogate: O-Terphenyl		62 %		40-140					

40-140

62 %

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Client Project ID: NGrid - 131 Morse St

Client Sample ID: B-3 2-5ft

Date Sampled: 12/29/21 11:22

Percent Solids: 92 Initial Volume: 24.4 Final Volume: 1

Extraction Method: 3546

ESS Laboratory Work Order: 21L1079 ESS Laboratory Sample ID: 21L1079-04

Sample Matrix: Soil Units: mg/kg dry

Prepared: 1/3/22 17:00

MADEP-EPH Extractable Petroleum Hydrocarbons

Analyte C9-C18 Aliphatics1	Results (MRL) 85.1 (16.7)	MDL	Method MADEP-EPH	Limit	$\frac{\mathbf{DF}}{1}$	Analyst MJV	Analyzed 01/05/22 13:34	Sequence D2A0058	Batch DA20331
C19-C36 Aliphatics1	99.9 (16.7)		MADEP-EPH		1	MJV	01/05/22 13:34	D2A0058	DA20331
C11-C22 Unadjusted Aromatics1	53.7 (16.7)		EPH8270		1	MJV	01/05/22 14:45	D2A0042	DA20331
C11-C22 Aromatics1,2	53.7 (16.7)		EPH8270			MJV	01/05/22 14:45		[CALC]
		%Recovery	Qualifier	Limits					

Surrogate: 1-Chlorooctadecane	70 %	40-140
Surrogate: 2-Bromonaphthalene	89 %	40-140
Surrogate: 2-Fluorobiphenyl	84 %	40-140
Surrogate: O-Terphenyl	74 %	40-140

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Client Project ID: NGrid - 131 Morse St

Client Sample ID: B-3 2-5ft Date Sampled: 12/29/21 11:22 ESS Laboratory Work Order: 21L1079 ESS Laboratory Sample ID: 21L1079-04

Sample Matrix: Soil

Subcontracted Analysis

AnalyteResults (MRL)
Grain SizeResults (MRL)
See Attached (N/A)MDL
MethodMethod
LimitDF
LimitAnalyst
Method
DFAnalyse
Analyzed
Manalyzed
UnitsBatch
Units

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Client Project ID: NGrid - 131 Morse St

Client Sample ID: B-3 5-7ft Date Sampled: 12/29/21 11:45

Percent Solids: 87 Initial Volume: 19.4 Final Volume: 1

Extraction Method: 3546

ESS Laboratory Work Order: 21L1079 ESS Laboratory Sample ID: 21L1079-05

Sample Matrix: Soil Units: mg/kg dry Analyst: BXK

Prepared: 1/5/22 20:10

8100M Total Petroleum Hydrocarbons

Analyte Total Petroleum Hydrocarbons Fingerprint	Results (MRL) MI 823 (11.8) See Project Narrative	DL Method 8100M	<u>Limit</u>	<u>DF</u>	Analyzed 01/06/22 14:44	Sequence D2A0109	Batch DA20507
	%Recover	y Qualifier	Limits				
Surrogate: O-Terphenyl	78 %		40-140				

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Client Project ID: NGrid - 131 Morse St

Client Sample ID: B-3 5-7ft Date Sampled: 12/29/21 11:45

Percent Solids: 87 Initial Volume: 24.2 Final Volume: 1

Extraction Method: 3546

ESS Laboratory Work Order: 21L1079 ESS Laboratory Sample ID: 21L1079-05

Sample Matrix: Soil Units: mg/kg dry

Prepared: 1/3/22 17:00

MADEP-EPH Extractable Petroleum Hydrocarbons

<u>Analyte</u>	Results (MRL)	MDL	Method	<u>Limit</u>	<u>DF</u>	Analys	<u>Analyzed</u>	Sequence	Batch
C9-C18 Aliphatics1	128 (17.7)		MADEP-EPH		1	MJV	01/05/22 14:09	D2A0058	DA20331
C19-C36 Aliphatics1	145 (17.7)		MADEP-EPH		1	MJV	01/05/22 14:09	D2A0058	DA20331
C11-C22 Unadjusted Aromatics1	86.1 (17.7)		EPH8270		1	MJV	01/05/22 15:23	D2A0042	DA20331
C11-C22 Aromatics1,2	86.1 (17.7)		EPH8270			MJV	01/05/22 15:23		[CALC]
		%Recovery	Qualifier	Limits					
Surrogate: 1-Chlorooctadecane		77 %		40-140					
Surrogate: 2-Bromonaphthalene		85 %		40-140					
Surrogate: 2-Fluorobiphenyl		81 %		40-140					
Surrogate: O-Terphenyl		74 %		40-140					

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Batch DA20507 - 3546

Client Project ID: NGrid - 131 Morse St ESS Laboratory Work Order: 21L1079

Quality Control Data

				Spike	Source		%REC		RPD	
Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier

8100M Total Petroleum Hydrocarbons

Batch DA20507 - 3546									
Blank									
Decane (C10)	ND	0.2	mg/kg wet						
Docosane (C22)	ND	0.2	mg/kg wet						
Dodecane (C12)	ND	0.2	mg/kg wet						
Eicosane (C20)	ND	0.2	mg/kg wet						
Hexacosane (C26)	ND	0.2	mg/kg wet						
Hexadecane (C16)	ND	0.2	mg/kg wet						
Hexatriacontane (C36)	ND	0.2	mg/kg wet						
Nonadecane (C19)	ND	0.2	mg/kg wet						
Nonane (C9)	ND	0.2	mg/kg wet						
Octacosane (C28)	ND	0.2	mg/kg wet						
Octadecane (C18)	ND	0.2	mg/kg wet						
Tetracosane (C24)	ND	0.2	mg/kg wet						
Tetradecane (C14)	ND	0.2	mg/kg wet						
Total Petroleum Hydrocarbons	ND	10.0	mg/kg wet						
Triacontane (C30)	ND	0.2	mg/kg wet						
Surrogate: O-Terphenyl	3.99		mg/kg wet	5.000	80	40-140			
LCS									
Decane (C10)	1.6	0.2	mg/kg wet	2.500	65	40-140			
Docosane (C22)	2.1	0.2	mg/kg wet	2.500	85	40-140			
Dodecane (C12)	1.7	0.2	mg/kg wet	2.500	69	40-140			
Eicosane (C20)	2.1	0.2	mg/kg wet	2.500	86	40-140			
Hexacosane (C26)	2.2	0.2	mg/kg wet	2.500	87	40-140			
Hexadecane (C16)	2.0	0.2	mg/kg wet	2.500	80	40-140			
Hexatriacontane (C36)	2.4	0.2	mg/kg wet	2.500	97	40-140			
Nonadecane (C19)	2.2	0.2	mg/kg wet	2.500	87	40-140			
Nonane (C9)	1.5	0.2	mg/kg wet	2.500	60	30-140			
Octacosane (C28)	2.1	0.2	mg/kg wet	2.500	86	40-140			
Octadecane (C18)	2.1	0.2	mg/kg wet	2.500	84	40-140			
Tetracosane (C24)	1.9	0.2	mg/kg wet	2.500	77	40-140			
Tetradecane (C14)	1.9	0.2	mg/kg wet	2.500	75	40-140			
Total Petroleum Hydrocarbons	29.4	10.0	mg/kg wet	35.00	84	40-140			
Triacontane (C30)	2.2	0.2	mg/kg wet	2.500	87	40-140			
Surrogate: O-Terphenyl	4.08		mg/kg wet	5.000	82	40-140			
LCS Dup									
Decane (C10)	1.7	0.2	mg/kg wet	2.500	70	40-140	7	25	
Docosane (C22)	2.2	0.2	mg/kg wet	2.500	89	40-140	4	25	
Dodecane (C12)	1.8	0.2	mg/kg wet	2.500	73	40-140	6	25	
Eicosane (C20)	2.2	0.2	mg/kg wet	2.500	90	40-140	5	25	
Hexacosane (C26)	2.3	0.2	mg/kg wet	2.500	91	40-140	5	25	
				2 500		40 140	6	25	
Hexadecane (C16)	2.1	0.2	mg/kg wet	2.500	85	40-140	6	25	
Hexadecane (C16) Hexatriacontane (C36)	2.1 2.6	0.2	mg/kg wet mg/kg wet	2.500	85 102	40-140	5	25 25	

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Client Project ID: NGrid - 131 Morse St ESS Laboratory Work Order: 21L1079

Quality Control Data

		Quan	ty Conti	OI Da	ıta					
Analyte	Result	MRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qualifie
		8100M Tot	al Petroleum	Hydroca	rbons					
Satch DA20507 - 3546										
Ionane (C9)	1.6	0.2	mg/kg wet	2.500		63	30-140	4	25	
Octacosane (C28)	2.3	0.2	mg/kg wet	2.500		90	40-140	5	25	
ctadecane (C18)	2.2	0.2	mg/kg wet	2.500		88	40-140	5	25	
etracosane (C24)	2.0	0.2	mg/kg wet	2.500		81	40-140	5	25	
etradecane (C14)	2.0	0.2	mg/kg wet	2.500		80	40-140	6	25	
otal Petroleum Hydrocarbons	31.0	10.0	mg/kg wet	35.00		89	40-140	5	25	
riacontane (C30)	2.3	0.2	mg/kg wet	2.500		91	40-140	5	25	
urrogate: O-Terphenyl	4.20		mg/kg wet	5.000		84	40-140			
	MAD	EP-EPH Ext	ractable Petro	oleum Hy	/drocarbo	ns				
atch DA20331 - 3546										
lank										
19-C36 Aliphatics1	ND	15.0	mg/kg wet							
9-C18 Aliphatics1	ND	15.0	mg/kg wet							
ecane (C10)	ND	0.5	mg/kg wet							
ocosane (C22)	ND	0.5	mg/kg wet							
odecane (C12)	ND	0.5	mg/kg wet							
cosane (C20)	ND	0.5	mg/kg wet							
exacosane (C26)	ND	0.5	mg/kg wet							
exadecane (C16)	ND	0.5	mg/kg wet							
exatriacontane (C36)	ND	0.5	mg/kg wet							
onadecane (C19)	ND	0.5	mg/kg wet							
onane (C9)	ND	0.5	mg/kg wet							
ctacosane (C28)	ND	0.5	mg/kg wet							
ctadecane (C18)	ND	0.5	mg/kg wet							
etracosane (C24)	ND	0.5	mg/kg wet							
etradecane (C14)	ND	0.5	mg/kg wet							
riacontane (C30)	ND	0.5	mg/kg wet							
urrogate: 1-Chlorooctadecane	1.74		mg/kg wet	2.000		87	40-140			
lank										
Methylnaphthalene	ND	0.20	mg/kg wet							
cenaphthene	ND	0.40	mg/kg wet							
cenaphthylene	ND	0.20	mg/kg wet							
nthracene	ND	0.40	mg/kg wet							
enzo(a)anthracene	ND	0.40	mg/kg wet							
enzo(a)pyrene	ND	0.40	mg/kg wet							
enzo(b)fluoranthene	ND	0.40	mg/kg wet							
(2	ND	0.40	mg/kg wet							
enzo(g,n,i)perylene		0.40	mg/kg wet							
	ND									
enzo(g,h,i)perylene enzo(k)fluoranthene 11-C22 Unadjusted Aromatics1	ND ND	15.0	mg/kg wet							
enzo(k)fluoranthene 11-C22 Unadjusted Aromatics1										
enzo(k)fluoranthene	ND	15.0	mg/kg wet							

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Client Project ID: NGrid - 131 Morse St ESS Laboratory Work Order: 21L1079

Quality Control Data

Analyte	Result	MRL	Units	Spike Level	Source Result %REC	%REC Limits	RPD RPD Limit	Qualifier
<u> </u>			ractable Petro					- '
Batch DA20331 - 3546								
Fluorene	ND	0.40	mg/kg wet					
Indeno(1,2,3-cd)Pyrene	ND	0.40	mg/kg wet					
Naphthalene	ND	0.40	mg/kg wet					
Phenanthrene	ND	0.40	mg/kg wet					
Pyrene	ND	0.40	mg/kg wet					
Surrogate: 2-Bromonaphthalene	1.54		mg/kg wet	2.000	<i>77</i>	40-140		
Surrogate: 2-Fluorobiphenyl	1.43		mg/kg wet	2.000	<i>72</i>	40-140		
Surrogate: O-Terphenyl	1.57		mg/kg wet	2.000	<i>78</i>	40-140		
LCS								
C19-C36 Aliphatics1	13.1	15.0	mg/kg wet	16.00	82	40-140		
C9-C18 Aliphatics1	6.9	15.0	mg/kg wet	12.00	57	40-140		
Decane (C10)	0.9	0.5	mg/kg wet	2.000	47	40-140		
Docosane (C22)	1.4	0.5	mg/kg wet	2.000	72	40-140		
Dodecane (C12)	1.0	0.5	mg/kg wet	2.000	50	40-140		
Eicosane (C20)	1.4	0.5	mg/kg wet	2.000	70	40-140		
Hexacosane (C26)	1.5	0.5	mg/kg wet	2.000	73	40-140		
Hexadecane (C16)	1.3	0.5	mg/kg wet	2.000	64	40-140		
Hexatriacontane (C36)	1.5	0.5	mg/kg wet	2.000	76	40-140		
Nonadecane (C19)	1.4	0.5	mg/kg wet	2.000	69	40-140		
Nonane (C9)	0.8	0.5	mg/kg wet	2.000	40	30-140		
Octacosane (C28)	1.4	0.5	mg/kg wet	2.000	71	40-140		
Octadecane (C18)	1.3	0.5	mg/kg wet	2.000	66	40-140		
Tetracosane (C24)	1.3	0.5	mg/kg wet	2.000	66	40-140		
Tetradecane (C14)	1.1	0.5	mg/kg wet	2.000	56	40-140		
Triacontane (C30)	1.4	0.5	mg/kg wet	2.000	71	40-140		
Surrogate: 1-Chlorooctadecane	1.74		mg/kg wet	2.000	87	40-140		
ıcs								
2-Methylnaphthalene	1.12	0.20	mg/kg wet	2.000	56	40-140		
Acenaphthene	1.34	0.40	mg/kg wet	2.000	67	40-140		
Acenaphthylene	1.24	0.20	mg/kg wet	2.000	62	40-140		
Anthracene	1.53	0.40	mg/kg wet	2.000	77	40-140		
Benzo(a)anthracene	1.37	0.40	mg/kg wet	2.000	69	40-140		
Benzo(a)pyrene	1.36	0.40	mg/kg wet	2.000	68	40-140		
Benzo(b)fluoranthene	1.35	0.40	mg/kg wet	2.000	68	40-140		
Benzo(g,h,i)perylene	1.42	0.40	mg/kg wet	2.000	71	40-140		
Benzo(k)fluoranthene	1.41	0.40	mg/kg wet	2.000	71	40-140		
C11-C22 Unadjusted Aromatics1	24.1	15.0	mg/kg wet	34.00	71	40-140		
Chrysene	1.45	0.40	mg/kg wet	2.000	73	40-140		
Dibenzo(a,h)Anthracene	1.44	0.20	mg/kg wet	2.000	72	40-140		
Fluoranthene	1.53	0.40	mg/kg wet	2.000	76	40-140		
Fluorene	1.40	0.40	mg/kg wet	2.000	70	40-140		
Indeno(1,2,3-cd)Pyrene	1.40	0.40	mg/kg wet	2.000	70	40-140		
Naphthalene	1.09	0.40	mg/kg wet	2.000	55	40-140		
Phenanthrene	1.49	0.40	mg/kg wet	2.000	75	40-140		
	venue, Cranston, RI 029		Tel: 401-461-71		ax: 401-461-4486		ESSLaboratory.com	

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Client Project ID: NGrid - 131 Morse St ESS Laboratory Work Order: 21L1079

Quality Control Data

				Spike	Source		%REC		RPD	
Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier
	MADE	P-EPH Extr	actable Petr	oleum Hy	/drocarbo	ns				

Batch DA20331 - 3546									
Pyrene	1.53	0.40	mg/kg wet	2.000	77	40-140			
,,e.e			9,119 1100	2.000		.0 1.0			
Surrogate: 2-Bromonaphthalene	1.51		mg/kg wet	2.000	<i>75</i>	40-140			
Surrogate: 2-Fluorobiphenyl	1.46		mg/kg wet	2.000	<i>73</i>	40-140			
Surrogate: O-Terphenyl	1.67		mg/kg wet	2.000	83	40-140			
.cs									
-Methylnaphthalene Breakthrough	0.0		%			0-5			
laphthalene Breakthrough	0.0		%			0-5			
CS Dup									
19-C36 Aliphatics1	12.7	15.0	mg/kg wet	16.00	79	40-140	3	25	
9-C18 Aliphatics1	6.8	15.0	mg/kg wet	12.00	57	40-140	0.9	25	
ecane (C10)	0.9	0.5	mg/kg wet	2.000	47	40-140	0.3	25	
ocosane (C22)	1.4	0.5	mg/kg wet	2.000	71	40-140	2	25	
odecane (C12)	1.0	0.5	mg/kg wet	2.000	50	40-140	0.6	25	
icosane (C20)	1.4	0.5	mg/kg wet	2.000	68	40-140	2	25	
exacosane (C26)	1.4	0.5	mg/kg wet	2.000	71	40-140	2	25	
exadecane (C16)	1.3	0.5	mg/kg wet	2.000	64	40-140	0.1	25	
exatriacontane (C36)	1.5	0.5	mg/kg wet	2.000	75	40-140	2	25	
onadecane (C19)	1.4	0.5	mg/kg wet	2.000	68	40-140	2	25	
onane (C9)	0.8	0.5	mg/kg wet	2.000	40	30-140	0.3	25	
ctacosane (C28)	1.4	0.5	mg/kg wet	2.000	69	40-140	2	25	
ctadecane (C18)	1.3	0.5	mg/kg wet	2.000	65	40-140	2	25	
etracosane (C24)	1.3	0.5	mg/kg wet	2.000	64	40-140	2	25	
etradecane (C14)	1.1	0.5	mg/kg wet	2.000	57	40-140	0.08	25	
riacontane (C30)	1.4	0.5	mg/kg wet	2.000	70	40-140	2	25	
	1.70		(l	3.000	05	10.110			
Surrogate: 1-Chlorooctadecane	1.70		mg/kg wet	2.000	85	40-140			
CS Dup									
-Methylnaphthalene	1.12	0.20	mg/kg wet	2.000	56	40-140	0.6	30	
cenaphthene	1.30	0.40	mg/kg wet	2.000	65	40-140	3	30	
cenaphthylene	1.17	0.20	mg/kg wet	2.000	58	40-140	6	30	
nthracene	1.51	0.40	mg/kg wet	2.000	76	40-140	1	30	
enzo(a)anthracene	1.35	0.40	mg/kg wet	2.000	68	40-140	1	30	
enzo(a)pyrene	1.39	0.40	mg/kg wet	2.000	69	40-140	2	30	
enzo(b)fluoranthene	1.36	0.40	mg/kg wet	2.000	68	40-140	0.8	30	
enzo(g,h,i)perylene	1.40	0.40	mg/kg wet	2.000	70	40-140	2	30	
enzo(k)fluoranthene	1.43	0.40	mg/kg wet	2.000	71	40-140	1	30	
11-C22 Unadjusted Aromatics1	25.7	15.0	mg/kg wet	34.00	76	40-140	6	25	
hrysene	1.49	0.40	mg/kg wet	2.000	74	40-140	2	30	
ibenzo(a,h)Anthracene	1.46	0.20	mg/kg wet	2.000	73	40-140	1	30	
luoranthene	1.50	0.40	mg/kg wet	2.000	75	40-140	2	30	
luorene	1.37	0.40	mg/kg wet	2.000	68	40-140	2	30	
ndeno(1,2,3-cd)Pyrene	1.41	0.40	mg/kg wet	2.000	70	40-140	0.6	30	
Naphthalene	1.09	0.40	mg/kg wet	2.000	54	40-140	0.4	30	
henanthrene	1.49	0.40	mg/kg wet	2.000	74	40-140	0.4	30	

185 Frances Avenue, Cranston, RI 02910-2211

2211 Tel: 401-461-7181

Dependability

◆ Quality

Fax: 401-461-4486 ◆ Service

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Client Project ID: NGrid - 131 Morse St ESS Laboratory Work Order: 21L1079

Quality Control Data

	D	MDI	11.20	Spike	Source	0/ 050	%REC	222	RPD	0 1:0
Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier
	MAD	EP-EPH Ext	ractable Petr	oleum Hy	/drocarbo	ns				
				•						
Batch DA20331 - 3546										
Pyrene	1.53	0.40	mg/kg wet	2.000		77	40-140	0.3	30	
	1.54		mg/kg wet	2.000		77	40-140			
Surrogate: 2-Bromonaphthalene										
Surrogate: 2-Fluorobiphenyl	1.47		mg/kg wet	2.000		74	40-140			
Surrogate: O-Terphenyl	1.67		mg/kg wet	2.000		83	40-140			
LCS Dup										
2-Methylnaphthalene Breakthrough	0.0		%				0-5		200	
Nanhthalene Breakthrough	0.0		%				0-5		200	

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Client Project ID: NGrid - 131 Morse St ESS Laboratory Work Order: 21L1079

Notes and Definitions

	Notes and Definitions
Z15	See Project Narrative
Z-08	See Attached
U	Analyte included in the analysis, but not detected
D	Diluted.
ND	Analyte NOT DETECTED at or above the MRL (LOQ), LOD for DoD Reports, MDL for J-Flagged Analytes
dry	Sample results reported on a dry weight basis
RPD	Relative Percent Difference
MDL	Method Detection Limit
MRL	Method Reporting Limit
LOD	Limit of Detection
LOQ	Limit of Quantitation
DL	Detection Limit
I/V	Initial Volume
F/V	Final Volume
e	Cub contracted analysis, see attached nonert

§ Subcontracted analysis; see attached report

1 Range result excludes concentrations of surrogates and/or internal standards eluting in that range.

Range result excludes concentrations of target analytes eluting in that range.
 Range result excludes the concentration of the C9-C10 aromatic range.

Avg Results reported as a mathematical average.

NR No Recovery

[CALC] Calculated Analyte

SUB Subcontracted analysis; see attached report

RL Reporting Limit

EDL Estimated Detection Limit
MF Membrane Filtration
MPN Most Probable Number
TNTC Too numerous to Count
CFU Colony Forming Units

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Client Project ID: NGrid - 131 Morse St ESS Laboratory Work Order: 21L1079

ESS LABORATORY CERTIFICATIONS AND ACCREDITATIONS

ENVIRONMENTAL

Rhode Island Potable and Non Potable Water: LAI00179 http://www.health.ri.gov/find/labs/analytical/ESS.pdf

Connecticut Potable and Non Potable Water, Solid and Hazardous Waste: PH-0750 http://www.ct.gov/dph/lib/dph/environmental health/environmental laboratories/pdf/OutofStateCommercialLaboratories.pdf

Maine Potable and Non Potable Water, and Solid and Hazardous Waste: RI00002 http://www.maine.gov/dhhs/mecdc/environmental-health/dwp/partners/labCert.shtml

Massachusetts Potable and Non Potable Water: M-RI002 http://public.dep.state.ma.us/Labcert/Labcert.aspx

New Hampshire (NELAP accredited) Potable and Non Potable Water, Solid and Hazardous Waste: 2424 http://des.nh.gov/organization/divisions/water/dwgb/nhelap/index.htm

New York (NELAP accredited) Non Potable Water, Solid and Hazardous Waste: 11313 http://www.wadsworth.org/labcert/elap/comm.html

New Jersey (NELAP accredited) Non Potable Water, Solid and Hazardous Waste: RI006 http://datamine2.state.nj.us/DEP_OPRA/OpraMain/pi_main?mode=pi_by_site&sort_order=PI_NAMEA&Select+a+Site:=58715

Pennsylvania: 68-01752

http://www.dep.pa.gov/Business/OtherPrograms/Labs/Pages/Laboratory-Accreditation-Program.aspx

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

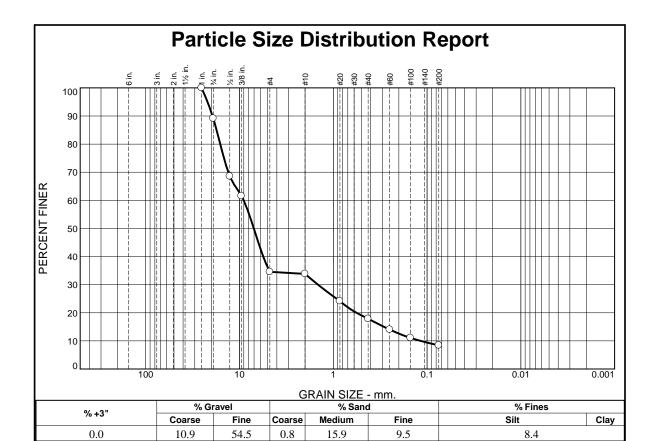
◆ Service

195 Frances Avenue Cranston RI, 02910 Phone: (401)-467-6454 Fax: (401)-467-2398 thielsch.com

Let's Build a Solid Foundation

Client Information:
Tighe & Bond
Providence, RI
PM: Matthew Abraham
Assigned By: ESS
Collected By: Client

Project Information:
National Grid - 131 Morse Street
Foxborough, MA


ESS Project Number: 21L01079

Summary Page: 1 of 1 Report Date: 01.12.22

LABORATORY TESTING DATA SHEET, Report No.: 7422-A-105

						I	dentificat	ion Test	S						Proctor / CI	3R / Permeal	oility Tests			
Source	Sample No.	Depth (Ft)	Laboratory No.	As Received Moisture Content %	LL %	PL %	%	Sand % D6913	%	Org. % D2974		Dry unit wt. pcf	Test Moisture Content %	(pcf) W _{opt} (%)	γ _d <u>MAX (pcf)</u> W _{opt} (%) (Corr.)	Target Test Setup as % of Proctor	CBR @ 0.1"	CBR @ 0.2"	Permeability cm/sec	Laboratory Log and Soil Description
				D2216	D4	310		D0913		D2974	D854			υ.	1337					
Soil Composite	B-3	2-5	21L01079-01				65.4	26.2	8.4											Brown well-graded gravel with silt and sand
				<u> </u>	<u> </u>			<u> </u>	1		<u> </u>		1000			<u> </u>			1	

Date Received:	1.04.22	Reviewed By:	Date Reviewed:	1.12.22
		-		

TEST RESULTS (D6913)									
Opening	Percent	Spec.*	Pass?						
Size	Finer	(Percent)	(X=Fail)						
1"	100.0								
0.75"	89.1								
0.5"	68.6								
0.375"	61.6								
#4	34.6								
#10	33.8								
#20	24.2								
#40	17.9								
#60	14.0								
#100	11.1								
#200	8.4								
4									

Provin wall and	Material Description									
Diowii weii-grac	Brown well-graded gravel with silt and sand									
Atterberg Limits (ASTM D 4318) PL= NP										
USCS (D 2487)=	Classification AASHTO	(M 145)= A-1-a								
D₉₀= 19.4069 D₅₀= 7.0362 D₁₀= 0.1172	Coefficients D ₈₅ = 17.5766 D ₃₀ = 1.4547 C _u = 77.06	D ₆₀ = 9.0312 D ₁₅ = 0.2877 C _c = 2.00								
	Remarks									
Date Received:	1.04.22 Date 1	Tested: 1.6.22								
Tested By:	SF									
Checked By:	Kris Roland									
Title:	Laboratory Supervisor	<u>r</u>								
		-								

* (no specification provided)

Source of Sample: Soil Composite Sample Sample: 2-5' Date Sampled: 12.29.21

Thielsch Engineering Inc.

Client: ESS

Project: National Grid - 131 Morse Street

Foxborough, MA

Cranston, RI Project No: 21L1079

Figure L01079-01

ESS Laboratory Sample and Cooler Receipt Checklist

Client	:	Tighe & Bo	nd - KPB/TB		ESS	Project ID:	21L1079	
Shipped/D	elivered Via:		Client		Projec	e Received: of Due Date: of for Project:	12/30/2021 1/7/2022 5 Day	
	nanifest prese		[No	6. Does CO	C match bottles?		Yes
2. Were cu	ustody seals p	present?	[No]	omplete and correct?		Yes
3. Is radiat	tion count <10	00 CPM?	Ĺ	Yes	9 Wore lah	e informad ahout el	nort holds & rushes?	Yes / No (NA)
	oler Present? :1		lce	Yes]		outside of hold time?	Yes (No)
5. Was CC	OC signed and	d dated by c	lient? [Yes				
•	bcontracting Sample IDs: Analysis: TAT:		Yes (a. Air bubbl	DAs received? es in aqueous VOAs thanol cover soil con		Yes (No) Yes / No Yes / No / NA
a. If metals	e samples pro s preserved u vel VOA vials	pon receipt:		Yes / No Date: Date:	Time:		By:	<u>:</u>
Sample Re	ceiving Notes	3:						
	ere a need to		oject Manager client?	? Date:	Yes (No. Yes (No. Time:	····	Ву:	
Sample Number	Container ID	Proper Container	Air Bubbles Present	Sufficient Volume	Container Type	Preservative	Record pH (Cy Pestic	
1	246888	Yes	N/A	Yes	4 oz. Jar	NP	_	
2	246889	Yes	N/A	Yes	4 oz. Jar	NP		
3	246890	Yes	N/A	Yes	4 oz. Jar	NP		
4	246891	Yes	N/A	Yes	4 oz. Jar	NP		
5	246892	Yes	N/A	Yes	4 oz. Jar	NP		
Are barcodo Are all Flas Are all Hex Are all QC	ontainers sca e labels on co	orrect contains attached/ors attached rers attached hed?	container ID # d?	circled?	Initials Yes / No Yes / No / NA	\ \		
Completed By:	_ (DQ4			Date & Time:	12/30/21	155%	

Reviewed

ESS Laboratory Sample and Cooler Receipt Checklist

Client:	Tighe & Bond - KPB/TB	ESS Project ID:	21L1079	
		Date Received:	12/30/2021	
Ву:	Date & Time:	1Z130171	LICHO	
			1 63 600	

185 Frances Avenue Cranston, RI 02910

~== : ===			
CHAIN	\mathbf{OF}	CUSTODY	
	\sim	CCCIODI	

ESS Lab#	ZJL.	1079
----------	------	------

Page

ge 1 of 1

L	3	ы	
			•

Turn Time (Days) □ > 5 □ 5 □ 4 □ 3 □ 2 □ 1 □ Same Day

ELECTRONIC DELIVERABLES (Final Reports are PDF)

	初起	Phone: 4	101-461-7181	Regulatory State:	Massachusetts Cr	iteria: S-1/GW-2, S-1/G	W-3	v	Limi	t Che	ker		State F	orms		EQu	IS			
LABORATION)1-461-4486		Is this project for any	y of the following?:		Ø	Exce	1			Hard C	ору	✓	Envi	iro Dat	a		
INDORIN	21		iboratory.com	□ CT RCP	✓ MA MCP □ R		□ 401 WQ		CLP-	-Like	Package									
	CLIENT IN		ION		PROJECT INF		_				REC	QUE	STED	ANA	YSI	ES				
	Tighe & Bon			Project Name:	· · · · · · · · · · · · · · · · · · ·	- 131 Morse St	Client		hd	m 1/	3/22							1		Ţ
Address: 300 West Exchange Street, Suite 300			Project Location:		ugh, MA	acknowledges]		Ě	
Providence, RI 02903			Project Number:	N506	that sampling	l									ł	1	- [Z		
Phone:		401-455-4	306	Project Manager:	Matthew	Abraham	is compliant with all EPA /	nges	بد					i I						ıber
Email		rokhovsky@tigl	hahand nom	Bill to:			State regulatory	Ra	rin											<u>.</u>
Distribution List:	j	harvey@tighebo	ond.com	PO#:			programs	Carbon Ranges	rp								-			Total Number of Bottles
		nabraham@tighe Collectioπ		Quote#:			:		Fingerprint											es.
ESS Lab ID	Date	Time	Sample Type	Sample Matrix		Sample ID		EPH	Fi	4		\perp		<u> </u>		Ш	\bot	44		
	12/29/2021	0940	Composite	Soil		B-1 (2.5-5')		X										Ш		1
2	12/29/2021	0920	Composite	Soil		B-2 (2.5-5')		X												1
3	12/29/2021	0948	Composite	Soil		B-2 (5-7')		X												1
4	12/29/2021	1122	Composite	Soil		B-3 (2-5')		X												1
5	12/29/2021	1145	Composite	Soil		B-3 (5-7')		X	Х										T	1
														1	1	П	\top	T	_	_
												\top			1			\top	十	
												1	 	T	\top	П	\top	$\top \top$	_	-
	<u></u>					 					1	\dagger			+		+	$\dagger \dagger$	\dashv	_
Con	tainer Type:	AC-A	I ir Cassette AG-Aml	ber Glass B-BOD Bot	tle C-Cubitainer J-Jar	O-Other P-Poly S-St	erile V-Vial	AG		+	+	\top	 	-	十		+	++	十	_
Contai	ner Volume:	1-100	mL 2-2.5 gal 3-2	50 mL 4-300 mL 5-	500 mL 6-1L 7-VOA	8-2 oz 9-4 oz 10-8 oz	z 11-Other*	9						11		H	\top	\top	1	5
Preserv	vation Code:	1-Non Pre	eserved 2-HCl 3-H2SC	O4 4-HNO3 5-NaOH 6	-Methanol 7-Na2S2O3 8-Zn			1												
S	Sampled by:	Shelby Miller	Marokhovsky			Chain	needs to be fil	lled	out	nea	tly an	d co	mple	ely fo	r on	tim	e del	iver	у.	
Labo	oratory Use (Only	Comments:	* Please specify "C	Other" preservative and	containers types in th	is space	A	.ll saı	mple	s submi	tted	are sub	ject to		Disc	solved	Filtra	tion	
Cooler Temperature (°C):								ESS Laboratory's pa				yment terms and			Dissolved Filtration					
I		-ce							•		condit	tions	.				J	Lab Fil	ter	
Relinqu	ished by (Sig	nature)	Date	Time	Received by (Signat	ure) Relinquish	ed by (Signature)			Da	te		Tir	ne	F	Recei	ved by	(Sign	ature	e)
() DOM	Or MI	λ / 1.	12/30/21	1550	Slaver -	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~														
mers c	- 1 100g/	elver 7	l	•	- Jayar ou		ad ha (Giorga trans)			D.	do.		ara			l a a a i	red b	(€ :	. 6	
Relinqu	ished by (Sig	nature)	Date	Time	Received by (Signat	ure) Remiquish	ed by (Signature)	Ξ.		Da	16		Tir	ne.		cecer	ved by	(Sign	and a	ij
															1					

Relinquished by (Signature)

Time

Date

Received by (Signature)

						•															
		185 Fra	nces Avenue		CHAI	N OF CUS	STODY	Y		ESS	Lab	# 2	<i>ii</i>	10	A		Pag	e 1	of	1	
		Cransto	on, RI 02910	Turn Time (Days)	□>5 ☑ 5	□ 4 □ 3	□ 2	1	☐ Same Day							LES (Final I	Reports	are PD	F)	l
	74	Phone: 4	401-461-7181	Regulatory State:	Massachuset	ts Criteria:	S-1/GW-2	2, S-1/G	W-3	☑ I	imit C	hecker		□ St	tate For	ms	□ F	QuIS			
APASS			01-461-4486		Is this proj	ject for any of the	e following	37:		☑ E	Excel			□н	ard Cop	ру	☑ F	enviro D	ata		
NATION STATES	51	www.essla	iboratory.com	☐ CT RCP	MA MCP	□ RGP	□ Po	ermit	□ 401 WQ		LP-Li	ke Paci	kage	□о	ther (Sp	pecify)	→				
CLIENT INFORMATION			PROJECT INFORMATION					REQUESTED ANALYSES													
	Tighe & Bon			Project Name:	Nati	ional Grid - 131 I	Morse St		Client		1							\Box		П	r
Address: 300 West Exchange Street, Suite 300			Project Location:	Foxborough, MA acknowledges						1				ı							
Providence, RI 02903			Project Number:		N5067-084			that sampling											1 1	1	
Phone: 401-455-4306			Project Manager:		Matthew Abrah	nam		is compliant	88 .	力。	l k			11							
Email				Bill to:				,	with all EPA /	Ran]									4
Distribution		rokhovsky@tigl jharvey@tigheb		PO#:	PO#: State regulatory programs					Carbon Ranges	E C										
List:	ma	aabraham@tighe		Quote#:	•				programs		웕				11						-
ESS Lab ID	Collection Date	Collection Time	Sample Type	Sample Matrix		Sa	mple ID			Hall	Fingerprint		-								
1	12/29/2021	0940	Composite	Soil		B -1	1 (2.5-5')			X							\Box	\top			•
2	12/29/2021	0920	Composite	Soil		B-2	2 (2.5-5')			х					11		П				
3	12/29/2021	0948	Composite	Sail		В-	-2 (5-7')			x								11			
च	12/29/2021	1122	Composite	Soil		В-	-3 (2-5')			x	X				11		П	11		Ħ	
5	12/29/2021	1145	Composite	Soil		В-	-3 (5-7')			x	₹						П	\top		\sqcap	•
											1	\Box				1	口				
																1	H	11			
									,		1				11	1	H	11			•
											\top		1		11		H	11			
							·						1		11		\vdash	11		广	•
Cont	ainer Type:	AC-A	ir Cassette AG-Aml	ber Glass B-BOD Bot	tle C-Cubitaine	er J-Jar O-Oth	her P-Pol	y S-St	erile V-Vial	AG	AG		1		11			1	\Box	\sqcap	٠
Contair	ıer Volume:	1-100	mL 2-2.5 gal 3-2	50 mL 4-300 mL 5-	-500 mL 6-1L	7-VOA 8-2 oz	9-4 oz	10-8 oz	: 11-Other*	9	10						П			П	
Preserv	ation Code:	1-Non Pro	eserved 2-HCl 3-H2SC	04 4-HNO3 5-NaOH 6	-Methanol 7-Na2	S2O3 8-ZnAce, Nat	OH 9-NH4	Cl 10-D	I H2O 11-Other*	1	1										
S	ampled by :	Shelby Miller	Marokhovsky				C	hain	needs to be fil	led o	out p	eatly	and	com	ple tel	y for	on t	ime d	eliver	у.	
Labo	ratory Use (Only	Comments:	* Please specify "C	Other" preserv	ative and conta	iners typ	es in th	is space	All	samı	oles su	ibmitt	ted are	subje	ct to			. 60		
Cooler Temperature (°C):										_				t terms		Dissolved Filtration					
COOLS TOMP	and Coj.	ice	1						•		•	CC	onditi	ons.					Lab Fi	ilter	i
Relinqui	shed by (Sig	nature)	Date	Time	Received b	y (Signature)	Rel	inquish	ed by (Signature)			Date	Ė		Time		Re	ceived	by (Sign	ature	ļ
a mi	O. MI	10	minale:	1550	C 0	The state of the	P	01/8	ach W	,		11			17/.			// .			
July L	Section Land	ples 17	12/30/21	1000	yayı	UE DALES	- The	少(()	MARGATO	1	1/	1/12			17/1		/	1			•

Relinquished by (Signature)

Received by (Signature)

Time

Date

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Matt Abraham Tighe & Bond 120 Front Street, Suite 7 Worcester, MA 01608

RE: NGrid - 131 Morse St (N-5067-084)

ESS Laboratory Work Order Number: 22A0128

This signed Certificate of Analysis is our approved release of your analytical results. These results are only representative of sample aliquots received at the laboratory. ESS Laboratory expects its clients to follow all regulatory sampling guidelines. Beginning with this page, the entire report has been paginated. This report should not be copied except in full without the approval of the laboratory. Samples will be disposed of thirty days after the final report has been delivered. If you have any questions or concerns, please feel free to call our Customer Service Department.

Laurel Stoddard Laboratory Director **REVIEWED**

By ESS Laboratory at 5:29 pm, Jan 13, 2022

Analytical Summary

The project as described above has been analyzed in accordance with the ESS Quality Assurance Plan. This plan utilizes the following methodologies: US EPA SW-846, US EPA Methods for Chemical Analysis of Water and Wastes per 40 CFR Part 136, APHA Standard Methods for the Examination of Water and Wastewater, American Society for Testing and Materials (ASTM), and other recognized methodologies. The analyses with these noted observations are in conformance to the Quality Assurance Plan. In chromatographic analysis, manual integration is frequently used instead of automated integration because it produces more accurate results.

The test results present in this report are in compliance with TNI and relative state standards, and/or client Quality Assurance Project Plans (QAPP). The laboratory has reviewed the following: Sample Preservations, Hold Times, Initial Calibrations, Continuing Calibrations, Method Blanks, Blank Spikes, Blank Spike Duplicates, Duplicates, Matrix Spikes, Matrix Spike Duplicates, Surrogates and Internal Standards. Any results which were found to be outside of the recommended ranges stated in our SOPs will be noted in the Project Narrative.

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Client Project ID: NGrid - 131 Morse St ESS Laboratory Work Order: 22A0128

SAMPLE RECEIPT

The following samples were received on January 06, 2022 for the analyses specified on the enclosed Chain of Custody Record.

To achieve CAM compliance for MCP data, ESS Laboratory has reviewed all QA/QC Requirements and Performance Standards listed in each method. Holding times and preservation have also been reviewed. All CAM requirements have been performed and achieved unless noted in the project narrative.

Each method has been set-up in the laboratory to reach required MCP standards. The methods for aqueous VOA and Soil Methanol VOA have known limitations for certain analytes. The regulatory standards may not be achieved due to these In addition, for all methods, matrix interferences, dilutions, and %Solids may elevate method reporting limits ESS Laboratory can provide, upon request, a Limit Checker (regulatory standard comparison above regulatory standards. spreadsheet) electronic deliverable which will highlight these exceedances.

Question I: All samples for EPH were analyzed for a subset of the required MCP list per the client's request.

Lab Number	Sample Name	Matrix	Analysis
22A0128-01	BW-1	Ground Water	EPH8270, MADEP-EPH
22A0128-02	BW-2	Ground Water	EPH8270, MADEP-EPH
22A0128-03	BW-3	Ground Water	EPH8270, MADEP-EPH

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Client Project ID: NGrid - 131 Morse St ESS Laboratory Work Order: 22A0128

PROJECT NARRATIVE

No unusual observations noted.

End of Project Narrative.

DATA USABILITY LINKS

To ensure you are viewing the most current version of the documents below, please clear your internet cookies for www.ESSLaboratory.com. Consult your IT Support personnel for information on how to clear your internet cookies.

Definitions of Quality Control Parameters

Semivolatile Organics Internal Standard Information

Semivolatile Organics Surrogate Information

Volatile Organics Internal Standard Information

Volatile Organics Surrogate Information

EPH and VPH Alkane Lists

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Client Project ID: NGrid - 131 Morse St ESS Laboratory Work Order: 22A0128

CURRENT SW-846 METHODOLOGY VERSIONS

Analytical Methods

1010A - Flashpoint

6010C - ICP

6020A - ICP MS

7010 - Graphite Furnace

7196A - Hexavalent Chromium

7470A - Aqueous Mercury

7471B - Solid Mercury

8011 - EDB/DBCP/TCP

8015C - GRO/DRO

8081B - Pesticides

8082A - PCB

8100M - TPH

8151A - Herbicides

8260B - VOA

8270D - SVOA

8270D SIM - SVOA Low Level

9014 - Cyanide

9038 - Sulfate

9040C - Aqueous pH

9045D - Solid pH (Corrosivity)

9050A - Specific Conductance

9056A - Anions (IC)

9060A - TOC

9095B - Paint Filter

MADEP 04-1.1 - EPH

MADEP 18-2.1 - VPH

Prep Methods

3005A - Aqueous ICP Digestion

3020A - Aqueous Graphite Furnace / ICP MS Digestion

3050B - Solid ICP / Graphite Furnace / ICP MS Digestion

3060A - Solid Hexavalent Chromium Digestion

3510C - Separatory Funnel Extraction

3520C - Liquid / Liquid Extraction

3540C - Manual Soxhlet Extraction

3541 - Automated Soxhlet Extraction

3546 - Microwave Extraction

3580A - Waste Dilution

5030B - Aqueous Purge and Trap

5030C - Aqueous Purge and Trap

5035A - Solid Purge and Trap

SW846 Reactivity Methods 7.3.3.2 (Reactive Cyanide) and 7.3.4.1 (Reactive Sulfide) have been withdrawn by EPA. These methods are reported per client request and are not NELAP accredited.

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Client Project ID: NGrid - 131 Morse St ESS Laboratory Work Order: 22A0128

MassDEP Analytical Protocol Certification Form

	MADEP RTN:												
This	form	provides co	ertif	ication for the follow	ving da	ata set: 22A0128-01 t	hro	ugh 22A0128-03					
Mat	rices:	(X) Ground	d W	ater/Surface Water		() Soil/Sediment		() Drinking Water	() Air	() Other:_			
CA	M Pro	otocol (che	ck a	ll that apply below):								
()	8260 CAM		() 7470/7471 Hg CAM III B	()	MassDEP VPH (GC/PID/FID) CAM IV A		() 8082 PCB CAM V A	` (9014 Total Cyanide/PAC CAM VI A	() 6860 Perch CAM VIII B	
()	8270 CAM	SVOC II B	() 7010 Metals CAM III C	()	MassDEP VPH (GC/MS) CAM IV C		() 8081 Pesticides CAM V B	() 7	7196 Hex Cr CAM VI B	() MassDEP CAM IX A	APH
()	6010 CAM	Metals III A	() 6020 Metals CAM III D	(X)	MassDEP EPH CAM IV B		() 8151 Herbicides CAM V C		Explosives CAM VIII A	() TO-15 VOC CAM IX B	C
				Affirmative respo	nses to	o questions A throug	gh F	are required for ''P	resumptive	Certainty'' sta	itus		
A		-						l on the Chain-of-Custo d/analyzed within met		•		Yes (X) N	o()
В	•	the analytic	_	* '				fied in the selected CA	_	•		Yes (X) N	o()
C	Were	all required			-	ical response actions and ard non-conforman	_	cified in the selected C.	AM protoco	ol(s)		Yes (X) N	o()
D	Does	the laborate	ory	report comply with a	all the	reporting requiremen	ts sp	pecified in the CAM V rting of Analytical Dat		ty		Yes (X) N	o()
E	VPH	, EPH, APH	I and	•	s each	method conducted w	_	out significant modifica		efer		Yes (X) N	o()
				` '	_	iplete analyte list repo	orte	d for each method?				Yes () N	o()
F	Were	all applical	ble (CAM protocol QC a	nd per		n-co	onformances identified	and evalua	ted		Yes (X) N	, ,
				-				re required for '''Presu	_	•			
G	<u>Data</u>	<u>User Note:</u>	Date	a that achieve ''Presi	ımptiv		y no	in the selected CAM pot necessarily meet the of the WSC-07-350.				Yes (X) N	o()*
Н	_			-		n the CAM protocol(Yes (X) N	o ()*
I		_		•	-	•		ed CAM protocol(s)?				Yes () N	o (X)*
*All	l nega	tive respoi	ıses	must be addressed	in an	attached laboratory	na na	rrative.					

I, the undersigned, attest under the pains and penalties of perjury that, based upon my personal inquiry of those responsible for obtaining the information, the material contained in this analytical report is, to the best of my knowledge and belief, accurate and complete.

Signature: _____ Date: January 13, 2022
Printed Name: Laurel Stoddard Position: Laboratory Director

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Client Project ID: NGrid - 131 Morse St

Client Sample ID: BW-1 Date Sampled: 01/06/22 10:50

Percent Solids: N/A Initial Volume: 1010

Final Volume: 1

Surrogate: O-Terphenyl

Extraction Method: 3510C

ESS Laboratory Work Order: 22A0128 ESS Laboratory Sample ID: 22A0128-01

Sample Matrix: Ground Water

Units: ug/L

40-140

Prepared: 1/10/22 16:20

MADEP-EPH Extractable Petroleum Hydrocarbons

<u>Analyte</u>	Results (MRL)	MDL	Method	<u>Limit</u>	<u>DF</u>	Analyst	Analyzed	Sequence	Batch
C9-C18 Aliphatics1	ND (99)		MADEP-EPH		1	MJV	01/11/22 19:58	D2A0140	DA21001
C19-C36 Aliphatics1	ND (99)		MADEP-EPH		1	MJV	01/11/22 19:58	D2A0140	DA21001
C11-C22 Unadjusted Aromatics1	ND (99.0)		EPH8270		1	MJV	01/11/22 23:37	D2A0142	DA21001
C11-C22 Aromatics1,2	ND (99.0)		EPH8270			MJV	01/11/22 23:37		[CALC]
Preservative:	pH <= 2		MADEP-EPH			MJV			DA21001
		%Recovery	Qualifier	Limits					
Surrogate: 1-Chlorooctadecane		54 %		40-140					
Surrogate: 2-Bromonaphthalene		90 %		40-140					
Surrogate: 2-Fluorobiphenyl		92 %		40-140					

99 %

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Client Project ID: NGrid - 131 Morse St

Client Sample ID: BW-2 Date Sampled: 01/06/22 11:45

Percent Solids: N/A Initial Volume: 1020

Final Volume: 1

Extraction Method: 3510C

ESS Laboratory Work Order: 22A0128 ESS Laboratory Sample ID: 22A0128-02

Sample Matrix: Ground Water

Units: ug/L

Prepared: 1/10/22 16:20

MADEP-EPH Extractable Petroleum Hydrocarbons

Analyte	Results (MRL)	MDL	Method	<u>Limit</u>	<u>DF</u>	Analyst	Analyzed	Sequence	Batch
C9-C18 Aliphatics1	ND (98)	·	MADEP-EPH		1	MJV	01/11/22 20:33	D2A0140	DA21001
C19-C36 Aliphatics1	ND (98)		MADEP-EPH		1	MJV	01/11/22 20:33	D2A0140	DA21001
C11-C22 Unadjusted Aromatics1	ND (98.0)		EPH8270		1	MJV	01/12/22 0:15	D2A0142	DA21001
C11-C22 Aromatics1,2	ND (98.0)		EPH8270			MJV	01/12/22 0:15		[CALC]
Preservative: pH <= 2			MADEP-EPH			MJV			DA21001
		%Recovery	Qualifier	Limits					
Surrogate: 1-Chlorooctadecane		77 %		40-140					
Surrogate: 2-Bromonaphthalene		94 %		40-140					
Surrogate: 2-Fluorobiphenyl		93 %		40-140					
Surrogate: O-Terphenyl		101 %		40-140					

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Client Project ID: NGrid - 131 Morse St

Client Sample ID: BW-3
Date Sampled: 01/06/22 13:10

Percent Solids: N/A Initial Volume: 1020

Final Volume: 1020

Extraction Method: 3510C

ESS Laboratory Work Order: 22A0128 ESS Laboratory Sample ID: 22A0128-03

Sample Matrix: Ground Water

Units: ug/L

Prepared: 1/10/22 16:20

MADEP-EPH Extractable Petroleum Hydrocarbons

Analyte C9-C18 Aliphatics1	Results (MRL) ND (98)	MDL	<u>Method</u> MADEP-EPH	<u>Limit</u>	<u>DF</u>	Analyst MJV	Analyzed 01/11/22 21:08	Sequence D2A0140	Batch DA21001
C19-C36 Aliphatics1	ND (98)		MADEP-EPH		1	MJV	01/11/22 21:08	D2A0140	DA21001
C11-C22 Unadjusted Aromatics1	ND (98.0)		EPH8270		1	MJV	01/12/22 0:52	D2A0142	DA21001
C11-C22 Aromatics1,2	ND (98.0)		EPH8270			MJV	01/12/22 0:52		[CALC]
Preservative: pH <= 2			MADEP-EPH			MJV			DA21001
		%Recovery	Qualifier	Limits					
Surrogate: 1-Chlorooctadecane		73 %		40-140					
Surrogate: 2-Bromonaphthalene		92 %		40-140					
Surrogate: 2-Fluorobiphenyl		97 %		40-140					
Surrogate: O-Terphenyl		101 %		40-140					

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Client Project ID: NGrid - 131 Morse St ESS Laboratory Work Order: 22A0128

Quality Control Data

				Spike	Source		%REC		RPD	
Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier

MADEP-EPH Extractable	Petroleum	Hydrocarbons
-----------------------	-----------	--------------

Batch DA21001 - 3510C						
Blank						
C19-C36 Aliphatics1	ND	100	ug/L			
C9-C18 Aliphatics1	ND	100	ug/L			
Currentes 1 Chloresetedesens	43.6		ug/L	50.00	87	40-140
Surrogate: 1-Chlorooctadecane Blank			-91-			
2-Methylnaphthalene	ND	5.0	ug/L			
Acenaphthene	ND	5.0	ug/L			
Acenaphthylene	ND	5.0	ug/L			
Anthracene	ND	5.0	ug/L			
Benzo(a)anthracene	ND	5.0	ug/L			
Benzo(a)pyrene	ND	10.0	ug/L			
Benzo(b)fluoranthene	ND	5.0	ug/L			
Benzo(g,h,i)perylene	ND	10.0	ug/L			
Benzo(k)fluoranthene	ND ND	10.0	ug/L			
C11-C22 Unadjusted Aromatics1	ND ND	10.0	ug/L ug/L			
Chrysene	ND	10.0	ug/L			
Dibenzo(a,h)Anthracene	ND	5.0	ug/L			
Fluoranthene	ND	10.0	ug/L			
Fluorene	ND	5.0	ug/L			
indeno(1,2,3-cd)Pyrene	ND	5.0	ug/L			
Naphthalene	ND	10.0	ug/L			
Phenanthrene	ND ND	5.0	ug/L			
Pyrene	ND ND	5.0	ug/L ug/L			
	42.2	5.0		50.00	84	40-140
Surrogate: 2-Bromonaphthalene	43.3		ug/L ug/L	50.00	87	40-140
Surrogate: 2-Fluorobiphenyl	46.1		ug/L	50.00	92	40-140
Surrogate: O-Terphenyl	70.1		ug/L	30.00		70-170
LCS						
C19-C36 Aliphatics1	360	100	ug/L	400.0	90	40-140
C9-C18 Aliphatics1	212	100	ug/L	300.0	71	40-140
Surrogate: 1-Chlorooctadecane	47.9		ug/L	50.00	96	40-140
LCS						
2-Methylnaphthalene	36.6	5.0	ug/L	50.00	73	40-140
Acenaphthene	42.3	5.0	ug/L	50.00	85	40-140
Acenaphthylene	39.5	5.0	ug/L	50.00	79	40-140
Anthracene	47.5	5.0	ug/L	50.00	95	40-140
Benzo(a)anthracene	41.6	5.0	ug/L	50.00	83	40-140
Benzo(a)pyrene	41.3	10.0	ug/L	50.00	83	40-140
Benzo(b)fluoranthene	39.3	5.0	ug/L	50.00	79	40-140
Benzo(g,h,i)perylene	43.8	10.0	ug/L	50.00	88	40-140
Benzo(k)fluoranthene	40.6	10.0	ug/L	50.00	81	40-140
C11-C22 Unadjusted Aromatics1	815	100	ug/L	850.0	96	40-140
Chrysene	43.7	10.0	ug/L	50.00	87	40-140
Dibenzo(a,h)Anthracene	43.1	5.0	ug/L	50.00	86	40-140
•						

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Client Project ID: NGrid - 131 Morse St ESS Laboratory Work Order: 22A0128

Quality Control Data

				Spike	Source		%REC		RPD	
Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	
	MAD	EP-EPH Extra	actable Petr	oleum Hy	/drocarbo	ns				
Batch DA21001 - 3510C										
Fluoranthene	45.3	10.0	ug/L	50.00		91	40-140			
Fluorene	41.7	5.0	ug/L	50.00		83	40-140			
Indeno(1,2,3-cd)Pyrene	42.6	5.0	ug/L	50.00		85	40-140			
Naphthalene	34.5	10.0	ug/L	50.00		69	40-140			
Phenanthrene	44.6	5.0	ug/L	50.00		89	40-140			
Pyrene	44.8	5.0	ug/L	50.00		90	40-140			
Surrogate: 2-Bromonaphthalene	46.4		ug/L	50.00		93	40-140			
Surrogate: 2-Fluorobiphenyl	48.2		ug/L	50.00		96	40-140			
Surrogate: O-Terphenyl	51.1		ug/L	50.00		102	40-140			
LCS										
2-Methylnaphthalene Breakthrough	0.0		%				0-5			
Naphthalene Breakthrough	0.0		%				0-5			
.CS Dup										
C19-C36 Aliphatics1	358	100	ug/L	400.0		90	40-140	0.5	25	
C9-C18 Aliphatics1	215	100	ug/L	300.0		72	40-140	2	25	
Surrogate: 1-Chlorooctadecane	48.3		ug/L	50.00		97	40-140			
.CS Dup										
2-Methylnaphthalene	34.4	5.0	ug/L	50.00		69	40-140	6	20	
Acenaphthene	42.7	5.0	ug/L	50.00		85	40-140	0.9	20	
Acenaphthylene	40.6	5.0	ug/L	50.00		81	40-140	3	20	
Anthracene	46.0	5.0	ug/L	50.00		92	40-140	3	20	
Benzo(a)anthracene	40.1	5.0	ug/L	50.00		80	40-140	4	20	
Benzo(a)pyrene	39.8	10.0	ug/L	50.00		80	40-140	3	20	
Benzo(b)fluoranthene	39.2	5.0	ug/L	50.00		78	40-140	0.3	20	
Benzo(g,h,i)perylene	42.1	10.0	ug/L	50.00		84	40-140	4	20	
Benzo(k)fluoranthene	41.5	10.0	ug/L	50.00		83	40-140	2		
C11-C22 Unadjusted Aromatics1	788	100	ug/L	850.0		93	40-140	3		
Chrysene	42.7	10.0	ug/L	50.00		85	40-140	2		
Dibenzo(a,h)Anthracene	43.0	5.0	ug/L	50.00		86	40-140	0.3		
Fluoranthene	43.0	10.0	ug/L	50.00		86	40-140	5		
Fluorene	41.4	5.0	ug/L	50.00		83	40-140	0.9		
Indeno(1,2,3-cd)Pyrene	41.4	5.0	ug/L	50.00		83	40-140	3		
Naphthalene	35.7	10.0	ug/L	50.00		71	40-140	3		
Phenanthrene	43.4	5.0	ug/L	50.00		87	40-140	3		
Pyrene	45.4	5.0	ug/L	50.00		91	40-140	1		
	46.3	5.0	ug/L ug/L	50.00		91 93	40-140 40-140	1	20	
Surrogate: 2-Bromonaphthalene	48.5		ug/L	50.00		95 97	40-140			
Surrogate: 2-Fluorobiphenyl	50.8		ug/L	50.00		102	40-140			
Surrogate: O-Terphenyl			-31-							
LCS Dup	2.2		0/				0.5		200	
2-Methylnaphthalene Breakthrough	0.0		%				0-5		200	

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Client Project ID: NGrid - 131 Morse St ESS Laboratory Work Order: 22A0128

Notes and Definitions

pH <= 2
Analyte included in the analysis, but not detected
Analyte NOT DETECTED at or above the MRL (LOQ), LOD for DoD Reports, MDL for J-Flagged Analytes
Sample results reported on a dry weight basis
Relative Percent Difference
Method Detection Limit
Method Reporting Limit
Limit of Detection
Limit of Quantitation

Detection Limit DL Initial Volume I/V F/V Final Volume

Subcontracted analysis; see attached report

1 Range result excludes concentrations of surrogates and/or internal standards eluting in that range.

2 Range result excludes concentrations of target analytes eluting in that range. 3 Range result excludes the concentration of the C9-C10 aromatic range.

Avg Results reported as a mathematical average.

NR No Recovery

[CALC] Calculated Analyte

SUB Subcontracted analysis; see attached report

RLReporting Limit

EDL Estimated Detection Limit MF Membrane Filtration MPN Most Probable Number **TNTC** Too numerous to Count **CFU** Colony Forming Units

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Client Project ID: NGrid - 131 Morse St ESS Laboratory Work Order: 22A0128

ESS LABORATORY CERTIFICATIONS AND ACCREDITATIONS

ENVIRONMENTAL

Rhode Island Potable and Non Potable Water: LAI00179 http://www.health.ri.gov/find/labs/analytical/ESS.pdf

Connecticut Potable and Non Potable Water, Solid and Hazardous Waste: PH-0750 http://www.ct.gov/dph/lib/dph/environmental_health/environmental_laboratories/pdf/OutofStateCommercialLaboratories.pdf

Maine Potable and Non Potable Water, and Solid and Hazardous Waste: RI00002 http://www.maine.gov/dhhs/mecdc/environmental-health/dwp/partners/labCert.shtml

Massachusetts Potable and Non Potable Water: M-RI002 http://public.dep.state.ma.us/Labcert/Labcert.aspx

New Hampshire (NELAP accredited) Potable and Non Potable Water, Solid and Hazardous Waste: 2424 http://des.nh.gov/organization/divisions/water/dwgb/nhelap/index.htm

New York (NELAP accredited) Non Potable Water, Solid and Hazardous Waste: 11313 http://www.wadsworth.org/labcert/elap/comm.html

New Jersey (NELAP accredited) Non Potable Water, Solid and Hazardous Waste: RI006 http://datamine2.state.nj.us/DEP_OPRA/OpraMain/pi_main?mode=pi_by_site&sort_order=PI_NAMEA&Select+a+Site:=58715

Pennsylvania: 68-01752

http://www.dep.pa.gov/Business/OtherPrograms/Labs/Pages/Laboratory-Accreditation-Program.aspx

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

◆ Service

ESS Laboratory Sample and Cooler Receipt Checklist

Client	:	Tighe & Bo	nd - KPB/TB		_	ESS Proj		22A0128	
O1-1			T00 0				ceived:	1/6/2022	
Shipped/L	Delivered Via:		ESS Courier		-	Project Due Days for F	roject:	1/13/2022 5 Day	
	nanifest prese			No]	6. Does COC ma	tch bottles?		Yes
2. Were cu	ustody seals p	present?		No]	7. Is COC comple			Yes
3. Is radiat	tion count <10	00 CPM?	[Yes]	8. Were samples	received intact?		Yes
	oler Present? : 3.5		:lce	Yes]			rt holds & rushes? utside of hold time?	Yes / No / NA Yes / No
5. Was Co	DC signed and	d dated by d	lient?	Yes]				
	bcontracting Sample IDs: Analysis: TAT:		Yes		-	12. Were VOAs r a. Air bubbles in b. Does methand		letely?	Yes No Yes / No Yes / No / NA
a. If metals	e samples pro s preserved u vel VOA vials	pon receipt:	•	Yes No Date: Date:		Time:	<u> </u>	Ву:	
Sample Re	ceiving Notes	s:							
	ere a need to		oject Manager client?		Yes / No Yes / No	Time:		Ву:	
Sample Number	Container ID	Proper Container	Air Bubbles Present	Sufficient Volume	Contain	ner Type	Preservative	Record pH (Cya Pestic	
1	247894	Yes	N/A	Yes	1L A	mber	HCI		
1	247895	Yes	N/A	Yes	1L A	mber	HCI		
2	247896	Yes	N/A	Yes	1L A	mber	HCI		
2	247897	Yes	N/A	Yes	1L A	mber	HCI		
3	247898	Yes	N/A	Yes		mber	HCI		•
3	247899	Yes	N/A	Yes	1L A	mber	HCI		
Are barcod Are all Flas Are all Hex Are all QC	on tainers sc le labels on c	orrect contains attached/kers attacheched?	container ID # d?	circled?	Initials	Yes / No / NA Yes / No / NA Yes / No / NA Yes / No / NA Yes / No / NA			
Completed Bv:		M.	7_		Date & Time:		5.77 le	533	

ESS Laboratory Sample and Cooler Receipt Checklist

Client:	Tighe & Bond - KPB/TB	ESS Project ID: _	22A0128	
_	-	Date Received:	1/6/2022	
Reviewed By:	May low Date & Time	: <u>1520</u>	1/19/28	

Phone:

Email

Distribution

List:

ESS Lab ID

Client: Tighe & Bond

Address: 300 West Exchange Street, Suite 300 Providence, RI 02903

Collection Collection

01/06/22/1310

01/06/22

Container Type:

Container Volume:

Preservation Code:

185 Frances Avenue Cranston, RI 02910

Phone: 401-461-7181 Fax: 401-461-4486 www.esslaboratory.com

401-455-4306

smarokhovsky@tighebond.com

jharvey@tighebond.com

maabraham@tighebond.com

1-100 mL 2-2.5 gal

	!							KL 1.5.	2 2 c	L A	2128						
35 Fra	nces Avenue		CHAIN	OF CUS	STODY		ES		# _)				Pa	ıge	1	of	1
ransto	on, RI 02910	Turn Time (Days)	□>5 ☑ 5	□4 □3	1 2 1	1		ELI	ECTRON	IC DI	LIVE	RABLE	S (Final	Rep	orts a	re PDF	}
one: 4	401-461-7181	Regulatory State:	Massachusetts	Criteria:	GW-2 & GW-	-3	V					☐ State Forms			IS		'
ax: 40	01-461-4486		Is this proje	ct for any of the	e following?:		10	Excel			Har	d Copy		_	ro Dat	а	
v.essla	boratory.com	□ CT RCP	☑ MA MCP	□ RGP	🗖 Permi	t □ 401 WQ		CLP-L	ike Packa								
MAT	TION		PROJEC	CT INFORM	ATION							D ANA		ES			
		Project Name:	Natio	nal Grid - 131 1	Morse St	CI.	"-			Ì							7 _
Street	t, Suite 300	Project Location:	-	Foxborough, M	ΊA	Client acknowledges											ota
)3		Project Number:		N5067-084		that sampling					1 1						
455-4	306	Project Manager:		Matthew Abrah	am	is compliant	Se			1 1						1 1	B
		Bill to:			•	with all EPA /	Rang										er o
	hebond.com ond.com	PO#:	23504	27084		State regulatory	/ g										В
@tighe	ebond.com	Quote#:	•			programs	Carbon Ranges									.	Total Number of Bottles
ction ne	Sample Type	Sample Matrix		Sa	mple ID		EPH										
0	Grab	GW		BW	- 1		X					\top					2
5	Grab	GW		BW	-Z		X										2
0	Grab	GW		BW	-3		X										2
									<u> </u>								
							L										
							L						_				
							<u> </u>				\perp	_					
		·					_		-		$\perp \perp$					igsqcup	
										<u> </u>		_					
						,										Ш	
		ber Glass B-BOD Bott					AG						\Box				
1-100	mI 2-2.5 col 3-2	50 mL 4_300 mL 5_	500 mT 6 11	7 VOA 9 2 44	0.4 0~ 10	Corr 11 Othors	1 4	1 I	1 1	1 1	1 1	. i l		· I	- 1	1 1	

Sampled by : Ellie Petraccio	one			Chain needs to be fil	led out neatly and	completely for	on time delivery.
Laboratory Use Only Cooler Temperature (°C): 3.5	Comments:	* Please specify "O	Other" preservative and contai	ners types in this space	All samples submit ESS Laboratory's pa	ayment terms and	Dissolved Filtration
· 1ce					conditi	ons.	☐ Lab Filter
Relinquished by (Signature)	Date	Time	Received by (Signature)	Relinquished by (Signature)	Date	Time	Received by (Signature)
leef!	01/06/22	1428	Ja Sud 14:28	Son Sur	1/6/22	15:23	42
Relinquished by (Signature)	Date	Time	Received by (Signature)	Relinquished by (Signature)	Date	Time	Received by (Signature)
•							

I-Non Preserved 2-HCl 3-H2SO4 4-HNO3 5-NaOH 6-Methanol 7-Na2S2O3 8-ZnAce, NaOH 9-NH4Cl 10-DI H2O 11-Other*

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Matt Abraham Tighe & Bond 120 Front Street, Suite 7 Worcester, MA 01608

RE: MEC - 131 Morse St Foxborough MA (N-5067-084) ESS Laboratory Work Order Number: 20L0353

This signed Certificate of Analysis is our approved release of your analytical results. These results are only representative of sample aliquots received at the laboratory. ESS Laboratory expects its clients to follow all regulatory sampling guidelines. Beginning with this page, the entire report has been paginated. This report should not be copied except in full without the approval of the laboratory. Samples will be disposed of thirty days after the final report has been delivered. If you have any questions or concerns, please feel free to call our Customer Service Department.

Laurel Stoddard Laboratory Director REVIEWED

By ESS Laboratory at 12:51 pm, Dec 24, 2020

Analytical Summary

The project as described above has been analyzed in accordance with the ESS Quality Assurance Plan. This plan utilizes the following methodologies: US EPA SW-846, US EPA Methods for Chemical Analysis of Water and Wastes per 40 CFR Part 136, APHA Standard Methods for the Examination of Water and Wastewater, American Society for Testing and Materials (ASTM), and other recognized methodologies. The analyses with these noted observations are in conformance to the Quality Assurance Plan. In chromatographic analysis, manual integration is frequently used instead of automated integration because it produces more accurate results.

The test results present in this report are in compliance with TNI and relative state standards, and/or client Quality Assurance Project Plans (QAPP). The laboratory has reviewed the following: Sample Preservations, Hold Times, Initial Calibrations, Continuing Calibrations, Method Blanks, Blank Spikes, Blank Spike Duplicates, Duplicates, Matrix Spikes, Matrix Spike Duplicates, Surrogates and Internal Standards. Any results which were found to be outside of the recommended ranges stated in our SOPs will be noted in the Project Narrative.

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Client Project ID: MEC - 131 Morse St Foxborough MA ESS Laboratory Work Order: 20L0353

SAMPLE RECEIPT

The following samples were received on December 10, 2020 for the analyses specified on the enclosed Chain of Custody Record.

To achieve CAM compliance for MCP data, ESS Laboratory has reviewed all QA/QC Requirements and Performance Standards listed in each method. Holding times and preservation have also been reviewed. All CAM requirements have been performed and achieved unless noted in the project narrative.

Each method has been set-up in the laboratory to reach required MCP standards. The methods for aqueous VOA and Soil Methanol VOA have known limitations for certain analytes. The regulatory standards may not be achieved due to these limitations. In addition, for all methods, matrix interferences, dilutions, and %Solids may elevate method reporting limits above regulatory standards. ESS Laboratory can provide, upon request, a Limit Checker (regulatory standard comparison spreadsheet) electronic deliverable which will highlight these exceedances.

Question I: All samples for EPH were analyzed for a subset of the required MCP list per the client's request.

Revision 1 December 24, 2020: This report has been revised to exclude quantitative TPH result for 20L0353-02.

Lab Number 20L0353-01	Sample Name SW-1	Matrix Surface Water	Analysis EPH8270, MADEP-EPH
20L0353-02	SW-2	Surface Water	8100M
20L0353-03	SW-3	Surface Water	EPH8270, MADEP-EPH

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Client Project ID: MEC - 131 Morse St Foxborough MA ESS Laboratory Work Order: 20L0353

PROJECT NARRATIVE

MADEP-EPH Extractable Petroleum Hydrocarbons

Continuing Calibration %Diff/Drift is below control limit (CD-). D0L0303-CCV2

Hexatriacontane (C36) (33% @ 25%)

No other observations noted.

End of Project Narrative.

DATA USABILITY LINKS

To ensure you are viewing the most current version of the documents below, please clear your internet cookies for www.ESSLaboratory.com. Consult your IT Support personnel for information on how to clear your internet cookies.

Definitions of Quality Control Parameters

Semivolatile Organics Internal Standard Information

Semivolatile Organics Surrogate Information

Volatile Organics Internal Standard Information

Volatile Organics Surrogate Information

EPH and VPH Alkane Lists

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Quality

Dependability

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Client Project ID: MEC - 131 Morse St Foxborough MA ESS Laboratory Work Order: 20L0353

CURRENT SW-846 METHODOLOGY VERSIONS

Analytical Methods

1010A - Flashpoint

6010C - ICP

6020A - ICP MS

7010 - Graphite Furnace

7196A - Hexavalent Chromium

7470A - Aqueous Mercury

7471B - Solid Mercury

8011 - EDB/DBCP/TCP

8015C - GRO/DRO

8081B - Pesticides

8082A - PCB 8100M - TPH

8151A - Herbicides

8260B - VOA

8270D - SVOA

8270D SIM - SVOA Low Level

9014 - Cyanide

9038 - Sulfate

9040C - Aqueous pH

9045D - Solid pH (Corrosivity)

9050A - Specific Conductance

9056A - Anions (IC)

9060A - TOC

9095B - Paint Filter

MADEP 04-1.1 - EPH

MADEP 18-2.1 - VPH

Prep Methods

3005A - Aqueous ICP Digestion

3020A - Aqueous Graphite Furnace / ICP MS Digestion

3050B - Solid ICP / Graphite Furnace / ICP MS Digestion

3060A - Solid Hexavalent Chromium Digestion

3510C - Separatory Funnel Extraction

3520C - Liquid / Liquid Extraction

3540C - Manual Soxhlet Extraction

3541 - Automated Soxhlet Extraction

3546 - Microwave Extraction

3580A - Waste Dilution

5030B - Aqueous Purge and Trap

5030C - Aqueous Purge and Trap

5035A - Solid Purge and Trap

SW846 Reactivity Methods 7.3.3.2 (Reactive Cyanide) and 7.3.4.1 (Reactive Sulfide) have been withdrawn by EPA. These methods are reported per client request and are not NELAP accredited.

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Client Project ID: MEC - 131 Morse St Foxborough MA ESS Laboratory Work Order: 20L0353

MassDEP Analytical Protocol Certification Form

]	MADEP RT	ſN:	-				_					
Thi	s form	provides co	ertif	īca	tion for the follow	ving (data set: 20L0353-01 t	hrou	igh 20L0353-03				
Ma	trices:	(x) Ground	d W	ate	r/Surface Water		() Soil/Sediment	(() Drinking Water	() Air	() Other:_		
CA	M Pro	otocol (che	ck a	ıll t	hat apply below)):							
()	8260 CAM		()	7470/7471 Hg CAM III B	() MassDEP VPH (GC/PID/FID) CAM IV A	(() 8082 PCB CAM V A	(0014 Total Cyanide/PAC CAM VI A	() 6860 Perchlorate CAM VIII B
()	8270 CAM	SVOC II B	()	7010 Metals CAM III C	() MassDEP VPH (GC/MS) CAM IV C	(() 8081 Pesticides CAM V B	() 7	7196 Hex Cr CAM VI B	() MassDEP APH CAM IX A
()	6010 CAM	Metals III A	()	6020 Metals CAM III D	(X) MassDEP EPH CAM IV B	(O 8151 Herbicides CAM V C		xplosives CAM VIII A	() TO-15 VOC CAM IX B
				A	ffirmative respo	nses	to questions A throug	h F	are required for ''P	resumptive	Certainty" sta	tus	
A		-					istent with those descri or laboratory, and prej				•		Yes (x) No ()
В	Were	-	cal i	net	hod(s) and all ass	sociat	red QC requirements sp	ecif	ried in the selected CA	M protocol	(s)		Yes (x) No ()
С		-				-	tical response actions and ard non-conforman	_		AM protoco	ol(s)		Yes (x) No ()
D	Does	the laborate	ory	rep	ort comply with a	all the	e reporting requirement the Acquisition and R	ts sp	ecified in the CAM V		ty		Yes (X) No ()
Е	VPH	, EPH, APH	I an	d T	O-15 only: a. Wa	s eac	h method conducted w cant modifications).	_	•		efer		Yes (X) No ()
					` /	_	mplete analyte list repo	ortec	I for each method?				Yes () No ()
F						_	rformance standard no esponses to Questions			and evalua	ted		Yes (x) No ()
					-		stions G, H and I belov			_	-		
G	<u>Data</u>	<u>User Note:</u>	Date	a th	at achieve ''Presu	ımpti	I reporting limits speci we Certainty" status ma 10 CMR 40. 1056 (2)(k)	y no	ot necessarily meet the d				Yes (X) No ()*
Н	_			_			in the CAM protocol(s						Yes (x) No ()*
I		_			-	-	e list specified in the se						Yes () No $(X)^*$
*Al	l nega	tive respor	nses	m	ust be addressed	in a	n attached laboratory	, na	rrative.			-	

I, the undersigned, attest under the pains and penalties of perjury that, based upon my personal inquiry of those responsible for obtaining the information, the material contained in this analytical report is, to the best of my knowledge and belief, accurate and complete.

Signature: _____ Date: December 21, 2020
Printed Name: Laurel Stoddard Position: Laboratory Director

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Client Project ID: MEC - 131 Morse St Foxborough MA

Client Sample ID: SW-1

Date Sampled: 12/09/20 09:50 Percent Solids: N/A

Initial Volume: 1000

Final Volume: 1

Extraction Method: 3510C

ESS Laboratory Work Order: 20L0353 ESS Laboratory Sample ID: 20L0353-01

Sample Matrix: Surface Water

Units: ug/L

Prepared: 12/14/20 13:48

MADEP-EPH Extractable Petroleum Hydrocarbons

Analyte	Results (MRL)	MDL	Method	<u>Limit</u>	<u>DF</u>	Analyst	Analyzed	Sequence	Batch
C9-C18 Aliphatics1	ND (100)		MADEP-EPH		1	AMF	12/16/20 0:27	D0L0303	DL01408
C19-C36 Aliphatics1	ND (100)		MADEP-EPH		1	AMF	12/16/20 0:27	D0L0303	DL01408
C11-C22 Unadjusted Aromatics1	ND (100)		EPH8270		1	AMF	12/19/20 3:28	D0L0364	DL01408
C11-C22 Aromatics1,2	ND (100)		EPH8270			AMF	12/19/20 3:28		[CALC]
Preservative:	pH <= 2		MADEP-EPH			AMF			DL01408
		%Recovery	Qualifier	Limits					
Surrogate: 1-Chlorooctadecane		49 %		40-140					
Surrogate: 2-Bromonaphthalene		79 %		40-140					
Surrogate: 2-Fluorobiphenyl		91 %		40-140					
Surrogate: O-Terphenyl		73 %		40-140					

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Client Project ID: MEC - 131 Morse St Foxborough MA

Client Sample ID: SW-2 Date Sampled: 12/09/20 09:20

Percent Solids: N/A Initial Volume: 1050 Final Volume: 1

Extraction Method: 3510C

ESS Laboratory Work Order: 20L0353 ESS Laboratory Sample ID: 20L0353-02

Sample Matrix: Surface Water

Units: ug/L Analyst: AMF

Prepared: 12/16/20 16:10

8100M Total Petroleum Hydrocarbons

Analyte Fingerprint	Results (MRL) MDL Resembles: Transformer Oil Ran	Method ge.	<u>Limit</u>	<u>DF</u>	<u>Analyzed</u>	<u>Sequence</u>	Batch
	%Recovery	Qualifier	Limits				
Surrogate: O-Terphenyl	100 %		40-140				

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181 Dependability

Fax: 401-461-4486 Service

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Client Project ID: MEC - 131 Morse St Foxborough MA

Client Sample ID: SW-3

Date Sampled: 12/09/20 09:15

Percent Solids: N/A Initial Volume: 1050

Final Volume: 1030

Extraction Method: 3510C

ESS Laboratory Work Order: 20L0353 ESS Laboratory Sample ID: 20L0353-03

Sample Matrix: Surface Water

Units: ug/L

Prepared: 12/14/20 13:48

MADEP-EPH Extractable Petroleum Hydrocarbons

Analyte	Results (MRL)	MDL	Method	<u>Limit</u>	<u>DF</u>	Analyst	Analyzed	Sequence	Batch
C9-C18 Aliphatics1	ND (95)		MADEP-EPH		1	AMF	12/16/20 1:16	D0L0303	DL01408
C19-C36 Aliphatics1	ND (95)		MADEP-EPH		1	AMF	12/16/20 1:16	D0L0303	DL01408
C11-C22 Unadjusted Aromatics1	ND (95.2)		EPH8270		1	AMF	12/19/20 5:55	D0L0364	DL01408
C11-C22 Aromatics1,2	ND (95.2)		EPH8270			AMF	12/19/20 5:55		[CALC]
Preservative:	pH <= 2		MADEP-EPH			AMF			DL01408
		%Recovery	Qualifier	Limits					
Surrogate: 1-Chlorooctadecane		49 %		40-140					
Surrogate: 2-Bromonaphthalene		74 %		40-140					
Surrogate: 2-Fluorobiphenyl		84 %		40-140					
Surrogate: O-Terphenyl		70 %		40-140					

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Client Project ID: MEC - 131 Morse St Foxborough MA ESS Laboratory Work Order: 20L0353

Quality Control Data

				Spike	Source		%REC		RPD	
Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier

8100M Total Petroleum Hydrocarbons

Batch DL01604 - 3510C									
Blank									
Decane (C10)	ND	5.00	ug/L						
Docosane (C22)	ND	5.00	ug/L						
Dodecane (C12)	ND	5.00	ug/L						
Eicosane (C20)	ND	5.00	ug/L						
Hexacosane (C26)	ND	5.00	ug/L						
Hexadecane (C16)	ND	5.00	ug/L						
Hexatriacontane (C36)	ND	5.00	ug/L						
Nonadecane (C19)	ND	5.00	ug/L						
Nonane (C9)	ND	5.00	ug/L						
Octacosane (C28)	ND	5.00	ug/L						
Octadecane (C18)	ND	5.00	ug/L						
Fetracosane (C24)	ND	5.00	ug/L						
Tetradecane (C14)	ND	5.00	ug/L						
Total Petroleum Hydrocarbons	ND	100	ug/L						
Triacontane (C30)	ND	5.00	ug/L						
Surrogate: O-Terphenyl	103		ug/L	100.0	103	40-140			
LCS									
Decane (C10)	35.5	5.00	ug/L	50.00	71	40-140			
Pocosane (C22)	44.4	5.00	ug/L	50.00	89	40-140			
Podecane (C12)	40.5	5.00	ug/L	50.00	81	40-140			
Eicosane (C20)	44.4	5.00	ug/L	50.00	89	40-140			
Hexacosane (C26)	43.9	5.00	ug/L	50.00	88	40-140			
Hexadecane (C16)	41.3	5.00	ug/L	50.00	83	40-140			
Hexatriacontane (C36)	46.6	5.00	ug/L	50.00	93	40-140			
Nonadecane (C19)	45.6	5.00	ug/L	50.00	91	40-140			
Nonane (C9)	30.1	5.00	ug/L	50.00	60	30-140			
Octacosane (C28)	44.3	5.00	ug/L	50.00	89	40-140			
Octadecane (C18)	42.4	5.00	ug/L	50.00	85	40-140			
Fetracosane (C24)	44.1	5.00	ug/L	50.00	88	40-140			
Tetradecane (C14)	40.0	5.00	ug/L	50.00	80	40-140			
Total Petroleum Hydrocarbons	592	100	ug/L	700.0	85	40-140			
Triacontane (C30)	43.4	5.00	ug/L	50.00	87	40-140			
Surrogate: O-Terphenyl	95.4		ug/L	100.0	95	40-140			
LCS Dup									
Decane (C10)	37.0	5.00	ug/L	50.00	74	40-140	4	25	
Docosane (C22)	45.2	5.00	ug/L	50.00	90	40-140	2	25	
Dodecane (C12)	42.0	5.00	ug/L	50.00	86	40-140	6	25	
	43.0		5.						
Eicosane (C20)	43.0 45.5	5.00	ug/L	50.00	91	40-140	2	25	
, ,				50.00 50.00	91 90	40-140 40-140	2	25 25	
Hexacosane (C26)	45.5	5.00	ug/L						
Eicosane (C20) Hexacosane (C26) Hexadecane (C16) Hexatriacontane (C36)	45.5 44.9	5.00 5.00	ug/L ug/L	50.00	90	40-140	2	25	

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Client Project ID: MEC - 131 Morse St Foxborough MA ESS Laboratory Work Order: 20L0353

Quality Control Data

Cailes Course WARC DDD												
Analyte	Result	MRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qualifier		
		8100M Tota	al Petroleun	n Hydroca	irbons							
Batch DL01604 - 3510C												
Nonane (C9)	31.1	5.00	ug/L	50.00		62	30-140	3	25			
Octacosane (C28)	45.3	5.00	ug/L	50.00		91	40-140	2	25			
Octadecane (C18)	44.1	5.00	ug/L	50.00		88	40-140	4	25			
Tetracosane (C24)	45.1	5.00	ug/L	50.00		90	40-140	2	25			
Tetradecane (C14)	41.3	5.00	ug/L	50.00		83	40-140	3	25			
Total Petroleum Hydrocarbons	610	100	ug/L	700.0		87	40-140	3	25			
riacontane (C30)	44.4	5.00	ug/L	50.00		89	40-140	2	25			
Surrogate: O-Terphenyl	95.4		ug/L	100.0		95	40-140					
, ,	MAD	EP-EPH Extra	actable Petr	oleum Hy	/drocarbo	ns						
Batch DL01408 - 3510C												
Blank												
C19-C36 Aliphatics1	ND	100	ug/L									
C9-C18 Aliphatics1	ND	100	ug/L									
Decane (C10)	ND	5	ug/L									
ocosane (C22)	ND	5	ug/L									
odecane (C12)	ND	5	ug/L									
icosane (C20)	ND	5	ug/L									
lexacosane (C26)	ND	5	ug/L									
lexadecane (C16)	ND	5	ug/L									
lexatriacontane (C36)	ND	5	ug/L									
Ionadecane (C19)	ND	5	ug/L									
Ionane (C9)	ND	5	ug/L									
Octacosane (C28)	ND	5	ug/L									
Octadecane (C18)	ND	5	ug/L									
etracosane (C24)	ND	5										
etracosarie (C24) Tetradecane (C14)	ND ND	5	ug/L									
Friacontane (C30)		5	ug/L ug/l									
Hacontaile (CO)	ND	J	ug/L									
Surrogate: 1-Chlorooctadecane	31.0		ug/L	50.00		62	40-140					
Blank		F.^	"									
-Methylnaphthalene	ND	5.0	ug/L									
Acenaphthene	ND	5.0	ug/L									
cenaphthylene	ND	5.0	ug/L									
Anthracene	ND	5.0	ug/L									
denzo(a)anthracene	ND	5.0	ug/L									
denzo(a)pyrene	ND	10.0	ug/L									
Benzo(b)fluoranthene	ND	5.0	ug/L									
Benzo(g,h,i)perylene	ND	10.0	ug/L									
Benzo(k)fluoranthene	ND	10.0	ug/L									
11-C22 Unadjusted Aromatics1	172	100	ug/L									
Chrysene	ND	10.0	ug/L									
Dibenzo(a,h)Anthracene	ND	5.0	ug/L									

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Client Project ID: MEC - 131 Morse St Foxborough MA ESS Laboratory Work Order: 20L0353

Quality Control Data

Analyte	Result	MRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qualifier
	MADEP-	EPH Extracta	able Petrol	eum Hyd	Irocarbon	S				

Batch DL01408 - 3510C						
Fluorene	ND	5.0	ug/L			
Indeno(1,2,3-cd)Pyrene	ND	5.0	ug/L			
Naphthalene	ND	10.0	ug/L			
Phenanthrene	ND	5.0	ug/L			
Pyrene	ND	5.0	ug/L			
Surrogate: 2-Bromonaphthalene	40.8		ug/L	50.00	82	40-140
Surrogate: 2-Fluorobiphenyl	47.6		ug/L	50.00	95	40-140
Surrogate: O-Terphenyl	39.4		ug/L	50.00	<i>79</i>	40-140
LCS						
C19-C36 Aliphatics1	339	100	ug/L	400.0	85	40-140
C9-C18 Aliphatics1	213	100	ug/L	300.0	71	40-140
Decane (C10)	23	5	ug/L	50.00	46	40-140
Docosane (C22)	44	5	ug/L	50.00	87	40-140
Dodecane (C12)	27	5	ug/L	50.00	53	40-140
Eicosane (C20)	43	5	ug/L	50.00	86	40-140
Hexacosane (C26)	43	5	ug/L	50.00	86	40-140
Hexadecane (C16)	40	5	ug/L	50.00	79	40-140
Hexatriacontane (C36)	33	5	ug/L	50.00	66	40-140
Nonadecane (C19)	43	5	ug/L	50.00	85	40-140
Nonane (C9)	18	5	ug/L	50.00	35	30-140
Octacosane (C28)	44	5	ug/L	50.00	87	40-140
Octadecane (C18)	42	5	ug/L	50.00	84	40-140
Tetracosane (C24)	44	5	ug/L	50.00	87	40-140
Tetradecane (C14)	34	5	ug/L	50.00	67	40-140
Triacontane (C30)	42	5	ug/L	50.00	84	40-140
<u></u>						
Surrogate: 1-Chlorooctadecane	33.1		ug/L	50.00	66	40-140
LCS						
2-Methylnaphthalene	40.4	5.0	ug/L	50.00	81	40-140
Acenaphthene	43.4	5.0	ug/L	50.00	87	40-140
Acenaphthylene	43.5	5.0	ug/L	50.00	87	40-140
Anthracene	48.3	5.0	ug/L	50.00	97	40-140
Benzo(a)anthracene	41.2	5.0	ug/L	50.00	82	40-140
Benzo(a)pyrene	42.1	10.0	ug/L	50.00	84	40-140
Benzo(b)fluoranthene	37.7	5.0	ug/L	50.00	75	40-140
Benzo(g,h,i)perylene	42.0	10.0	ug/L	50.00	84	40-140
Benzo(k)fluoranthene	42.5	10.0	ug/L	50.00	85	40-140
C11-C22 Unadjusted Aromatics1	942	100	ug/L	850.0	111	40-140
Chrysene	41.1	10.0	ug/L	50.00	82	40-140
Dibenzo(a,h)Anthracene	42.9	5.0	ug/L	50.00	86	40-140
Fluoranthene	41.8	10.0	ug/L	50.00	84	40-140
Fluorene	43.0	5.0	ug/L	50.00	86	40-140
Indeno(1,2,3-cd)Pyrene	43.8	5.0	ug/L	50.00	88	40-140
Naphthalene	38.3	10.0	ug/L	50.00	77	40-140
Phenanthrene	43.1	5.0	ug/L	50.00	86	40-140

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Client Project ID: MEC - 131 Morse St Foxborough MA ESS Laboratory Work Order: 20L0353

Quality Control Data

Analyte	Result	MRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qualifier
·,		EP-EPH Extr						5	2	
					ai ocai bo					
Batch DL01408 - 3510C										
Pyrene	42.6	5.0	ug/L	50.00		85	40-140			
Surrogate: 2-Bromonaphthalene	41.8		ug/L	50.00		84	40-140			
Surrogate: 2-Fluorobiphenyl	52.1		ug/L	50.00		104	40-140			
Surrogate: O-Terphenyl	41.5		ug/L	50.00		83	40-140			
cs										
2-Methylnaphthalene Breakthrough	0.0		%				0-5			
laphthalene Breakthrough	0.0		%				0-5			
CS Dup										
C19-C36 Aliphatics1	340	100	ug/L	400.0		85	40-140	0.3	25	
C9-C18 Aliphatics1	205	100	ug/L	300.0		68	40-140	4	25	
Decane (C10)	23	5	ug/L	50.00		46	40-140	0.2	25	
Docosane (C22)	44	5	ug/L	50.00		88	40-140	0.3	25	
Podecane (C12)	26	5	ug/L	50.00		52	40-140	2	25	
cicosane (C20)	43	5	ug/L	50.00		87	40-140	0.3	25	
Hexacosane (C26)	43	5	ug/L	50.00		87	40-140	0.4	25	
lexadecane (C16)	40	5	ug/L	50.00		80	40-140	0.8	25	
lexatriacontane (C36)	33	5	ug/L	50.00		66	40-140	0.003	25	
onadecane (C19)	43	5	ug/L	50.00		85	40-140	0.3	25	
lonane (C9)	18	5	ug/L	50.00		35	30-140	0.006	25	
Octacosane (C28)	44	5	ug/L	50.00		87	40-140	0.5	25	
Octadecane (C18)	42	5	ug/L	50.00		84	40-140	0.4	25	
etracosane (C24)	44	5	ug/L	50.00		88	40-140	0.4	25	
Tetradecane (C14)	34	5	ug/L	50.00		67	40-140	0.1	25	
riacontane (C30)	42	5	ug/L	50.00		84	40-140	0.6	25	
Surrogate: 1-Chlorooctadecane	35.2		ug/L	50.00		70	40-140			
.CS Dup			- 3,							
-Methylnaphthalene	37.5	5.0	ug/L	50.00		75	40-140	8	20	
Acenaphthene	41.0	5.0	ug/L	50.00		82	40-140	6	20	
Acenaphthylene	38.5	5.0	ug/L	50.00		77	40-140	12	20	
Inthracene	46.7	5.0	ug/L	50.00		93	40-140	3	20	
Benzo(a)anthracene	38.1	5.0	ug/L	50.00		76	40-140	8	20	
Benzo(a)pyrene	38.6	10.0	ug/L	50.00		70 77	40-140	9	20	
Benzo(b)fluoranthene	36.9	5.0	ug/L	50.00		74	40-140	2	20	
Benzo(g,h,i)perylene	40.3	10.0	ug/L	50.00		81	40-140	4	20	
Benzo(k)fluoranthene	40.3	10.0	ug/L	50.00		81	40-140	5	20	
C11-C22 Unadjusted Aromatics1	876	100	ug/L	850.0		103	40-140	7	25	
Chrysene	39.7	10.0	ug/L	50.00		79	40-140	4	20	
Dibenzo(a,h)Anthracene	41.7	5.0	ug/L	50.00		83	40-140	3	20	
Fluoranthene	38.8	10.0	ug/L	50.00		78	40-140	8	20	
luorene	38.9	5.0	ug/L	50.00		78	40-140	10	20	
indeno(1,2,3-cd)Pyrene	43.7	5.0	ug/L ug/L	50.00		87	40-140	0.3	20	
Naphthalene	36.5	10.0	ug/L ug/L	50.00		73	40-140	5	20	
Phenanthrene	41.0	5.0	ug/L ug/L	50.00		82	40-140	5	20	
nenanali Cile	41.5	5.0	ug/L ug/L	50.00		83	10-140	3	20	

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Client Project ID: MEC - 131 Morse St Foxborough MA ESS Laboratory Work Order: 20L0353

Quality Control Data

Analyte	Result	MRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qualifier
	MADE	EP-EPH Extracta	able Peti	roleum Hy	drocarbo	ns				
Batch DL01408 - 3510C										
Surrogate: 2-Bromonaphthalene	39.8		ug/L	50.00		80	40-140			
Surrogate: 2-Fluorobiphenyl	48.8		ug/L	50.00		98	40-140			
Surrogate: O-Terphenyl	39.0		ug/L	50.00		<i>78</i>	40-140			
LCS Dup										
2-Methylnaphthalene Breakthrough	0.0		%				0-5		200	
Naphthalene Breakthrough	0.0		%				0-5		200	

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Client Project ID: MEC - 131 Morse St Foxborough MA ESS Laboratory Work Order: 20L0353

	Notes and Definitions
Z-06	$pH \le 2$
Z-01	Resembles: Transformer Oil Range.
U	Analyte included in the analysis, but not detected
CD-	Continuing Calibration %Diff/Drift is below control limit (CD-).
ND	Analyte NOT DETECTED at or above the MRL (LOQ), LOD for DoD Reports, MDL for J-Flagged Analytes
dry	Sample results reported on a dry weight basis
RPD	Relative Percent Difference
MDL	Method Detection Limit
MRL	Method Reporting Limit
LOD	Limit of Detection
LOQ	Limit of Quantitation
DL	Detection Limit
I/V	Initial Volume
F/V	Final Volume
8	Subcontracted analysis: see attached report

Subcontracted analysis; see attached report

Range result excludes concentrations of surrogates and/or internal standards eluting in that range.

2 Range result excludes concentrations of target analytes eluting in that range. 3

Range result excludes the concentration of the C9-C10 aromatic range.

Avg Results reported as a mathematical average.

NR No Recovery

[CALC] Calculated Analyte

SUB Subcontracted analysis; see attached report

RL Reporting Limit

EDL Estimated Detection Limit MF Membrane Filtration MPN Most Probably Number **TNTC** Too numerous to Count **CFU Colony Forming Units**

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Client Project ID: MEC - 131 Morse St Foxborough MA ESS Laboratory Work Order: 20L0353

ESS LABORATORY CERTIFICATIONS AND ACCREDITATIONS

ENVIRONMENTAL

Rhode Island Potable and Non Potable Water: LAI00179 http://www.health.ri.gov/find/labs/analytical/ESS.pdf

Connecticut Potable and Non Potable Water, Solid and Hazardous Waste: PH-0750 http://www.ct.gov/dph/lib/dph/environmental_health/environmental_laboratories/pdf/OutofStateCommercialLaboratories.pdf

Maine Potable and Non Potable Water, and Solid and Hazardous Waste: RI00002 http://www.maine.gov/dhhs/mecdc/environmental-health/dwp/partners/labCert.shtml

Massachusetts Potable and Non Potable Water: M-RI002 http://public.dep.state.ma.us/Labcert/Labcert.aspx

New Hampshire (NELAP accredited) Potable and Non Potable Water, Solid and Hazardous Waste: 2424 http://des.nh.gov/organization/divisions/water/dwgb/nhelap/index.htm

New York (NELAP accredited) Non Potable Water, Solid and Hazardous Waste: 11313 http://www.wadsworth.org/labcert/elap/comm.html

New Jersey (NELAP accredited) Non Potable Water, Solid and Hazardous Waste: RI006 http://datamine2.state.nj.us/DEP_OPRA/OpraMain/pi_main?mode=pi_by_site&sort_order=PI_NAMEA&Select+a+Site:=58715

United States Department of Agriculture Soil Permit: P330-12-00139

Pennsylvania: 68-01752

http://www.dep.pa.gov/Business/OtherPrograms/Labs/Pages/Laboratory-Accreditation-Program.aspx

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

ESS Laboratory Sample and Cooler Receipt Checklist

Client		Tighe & Bo	nd - KPB/TB			roject ID:	20L0353	
Shinned/F	Delivered Via:		ESS Courier		Date F	Received: Due Date:	12/10/2020 12/17/2020	
Shippeur	clivered via.		LOG Courier			r Project:	5 Day	
	nanifest prese		[No	6. Does COC r	· · · · · · · · · · · · · · · · · · ·		Yes
	·			No	7. Is COC com	plete and correct	?	Yes
	tion count <10		ſ	Yes	8. Were sampl	es received intact	?	Yes
	oler Present?	,		Yes	9. Were labs i	nformed about <u>s</u>	hort holds & rushes?	Yes / No (NA
	3.6	Iced with:	lce	100	10. Were any	analyses received	d outside of hold time?	Yes No
5. Was Co	OC signed and	d dated by c	lient? [Yes]			
	sbcontracting s Sample IDs: Analysis: TAT:		Yes			s received? in aqueous VOAs anol cover soil cor		Yes (No Yes / No Yes / No / NA
a. If metals	e samples pro s preserved u vel VOA vials	pon receipt:		(PS / No Date: Date:	Time: Time:		Ву: Ву:	<u> </u>
Sample Re	eceiving Notes	s:						
	nere a need to contacted?			Date:	Yes / No Yes / No Time:		Ву:	
Sample Number	Container ID	Proper Container	Air Bubbles Present	Sufficient Volume	Container Type	Preservative	Record pH (Cy	
1	117944	Yes	N/A	Yes	1L Amber	HCI	· 4, •	
1	118711	Yes	N/A	Yes	1L Amber	HCI	ti. Şer	
2	117945	Yes	N/A	Yes	1L Amber	HCI		
2	118712	Yes	N/A	Yes	1L Amber	HCI		
3	117946	Yes	N/A	Yes	1L Amber	HCI		
3	118713	Yes	N/A	Yes	1L Amber	HCI		
Are barcod Are all Flas Are all Hex Are all QC	w ontainers sca e labels on co shpoint sticker Chrome stick stickers attack	orrect contains attached/or attached ers attached hed?	ners? container ID # d?	circled?	Initials Yes / No/ NA Yes / No / NA Yes / No / NA Yes / No / NA)		
Completed By: Reviewed By:		504	} _	<u></u>	Date & Time: 12-///	/6 //2	7 <u> </u> 1394	

ESS Laboratory Sample and Cooler Receipt Checklist

Client:	Tighe & Bond - KPB/TB	ESS Project ID:	20L0353	
	<u> </u>	Date Received:	12/10/2020	
Delivered By:	() 2/4	12/1/20 1344		

		N OF	, C
Turn Time (Days) □> 5	Y 5	□4	
Regulatory State: MA			rite

200	زم	35

		10 <i>5</i> P			СНА	IN OF CU	STODY	•	ESS I	Lab#	2	∞	35	3	Pag	ge	1	of	1
H 6			nces Avenue n, RI 02921	Turn Time (Days)	□> 5 1 5	□4 □3	□2 □1							ABLES	(Final	Repor	ts are	PDF)	
1.76			101-461-7181	Regulatory State:		Criteria			☑ Li	mit Che	cker		State I	orms		EQuIS			
TAU C	XF		01-461-4486			oject for any of th				xcel			Hard (Enviro			
LABORA	2Y		boratory.com	□CT RCP	МА МСР		☐ Permit	□401 WQ	□ cı	LP-Like	Packag	e 🗆	Other	(Specify)) →	<u> P D F</u>			
	CLIENT IN	NFORMAT	TION		PROJ	ECT INFOR	MATION				RI	EQUE	STEI) ANAI	YSE	S			4
Client:	Tighe &	Bond		Project Name	: 131 1	lorse str	ret	Client		4	<u>≯</u>				1				15
	120 F.		reet	Project Location	Foxbo	rough, N	1 A	acknowledges	4	4	3	1,				Ì			tal
	ester,		01608	Project Number	N-506	7-084		that sampling		કૂ -	₹	果	PI					Į	
Phone:				Project Manager	: MA++	Abraham		is compliant	4	Sara C	7		[[1 1		1 1		ber
Email N	1AAbrah	an 60 Ti	ghe bond com	Bill to	MEC			with all EPA /	l Ti	17	3	宝 。							01
Distribution	(Biek.h	. (in Tind	u bond.com	PO#				State regulatory programs		131	4	1916							301
List:	CD-C (37	<i>u</i> <u> </u>	ccomo com	Quote#	:			programs		di	型	\ L3							es
ESS Lab ID		Collection	Sample Type	Sample Matrix		S	ample ID		4	M	- 	80							
	Date	0950	6-	~~	5 W-1				٦ الا	M									2
2		0920	6	W	5w-2			· · · · · · · · · · · · · · · · · · ·	X	7,	V								Z
3	, ,	0915	6	w	5 w-				M	14									2
	7.7.		-				**			T^{T}								. 1 .	ı
					 				T	11									1
	ļ.——			<u> </u>	 					╌┼	+								T
		<u> </u>							╁┼┼	╌			╁┼	++			++	\dashv	╁
							**		1	- -	\dashv	 	\vdash	+	+	┌┼┼┼	+		╀
			<u> </u>						\sqcup				<u> </u>	11		$\vdash \vdash$	4-4	+	┸
																	Ш		
	.1												.						
Con	tainer Type:	AC-A	ir Cassette AG-Am	ber Glass B-BOD Bo	ottle C-Cubita	niner J-Jar O-O	ther P-Poly S-	-Sterile V-Vial	46								\top		
	iner Volume:			250 mL 4-300 mL					6										
	vation Code:	.,,.		O4 4-HNO3 5-NaOH					2										1
	Sampled by :		cell- 978 -	503-8055			Chair	n needs to be fi	lled o	out ne	atly a	nd co	mple	etely fo	r on	time	deli	very.	
	oratory Use	Only	Comments:	* Please specify "	Other" prese	ervative and con	tainers types in	this space	All	sampl	es subi	nitted	are su	bject to		Disso	lvod E	iltratio	a ro
		210	Do not	need PP	m am	ount O	nly ne	ed to						rms and		DISSU	. et i	nc auc	
Cooler Temp	perature (°C);	2,6	Know	if E	PH ,	's Presi	207.		ļ		con	ditions	i .				La	ab Filte	r
Polingu	rished by (Si	mature)	Date	Time		I by (Signature)		ished by (Signature)	D	ate		T	ime	F	Receive	d by (Signat	ure)
Keiniqu			T , , , .		Τ		//3			to in	112 -		10.0	<u>ا</u>		41		en.	0
Colfe	11	YMIN	12/9/20	11:15	Ketri	igerato_	16001	en Romas		17/1	100	<u> </u>				7 '			
Relingu	iished by (Si	gnature)	Date	Time	Received	t by (Signature)	Relinqui	ished by (Signature)	I.	Pate	-,-	Т	ime	F	c eceive	d by (Signat	ure
4)	γ,	wos	12/10	17.48			1												
11 bral	ren pa	כטיש.	100	1 (1, /)		<u> </u>									l				

Laboratory Analysis Report

244916

Tighe & Bond

CUSTOMER INFOR	RMATION	ORDER INFORMATI	ON	REPORT AUTHORIZATION			
Address:	Tighe & Bond	Purchase Order: 235067 Submitter Ref:		Authorized By:	Flecker, Ben		
	53 S Hampton Road			Email:	BFlecker@doble.com		
		Date Received:	10/05/2020	Authorization Signature:			
	Westfield, MA 01085	Report Revision:		A Po 1			
Primary Contact:	Ryan Basting			Bergamin Flecher			
Primary Email:	rmbasting@tighebond.com			Date Report Issued:	10/05/2020		

Thank you for using Doble Engineering analytical laboratory services, we greatly appreciate the opportunity to serve you and value your business. In accordance with your request, we have performed testing on the sample(s) provided. If the sampling date is not provided, the sample receipt date is used to provide chronological information. Should you have any comments, suggestions or questions please feel free to contact us at the Email listed above.

Samples Requiring Immediate Attention

Doble Engineering and Morgan Schaffer Laboratories are ISO/IEC 17025 Accredited

The analyses contained in this report are based upon material and information supplied by the customer. Doble Engineering/ Morgan Schaffer do not imply that the contents of the sample received are the same as all such material in the environment from which the sample was taken. Our test results only relate to the sample(s) tested. Doble Engineering/ Morgan Schaffer assume no responsibility and makes no warranty or representation as provided in the Doble Terms and Conditions Revision 030232020. This report must not be reproduced, unless in its entirety, without the written consent of Doble Engineering. (^Accredited Tests (from the start date of each lab's accreditation), 7 Subcontracted Tests, *Non-Doble/MS Imported Test Results).

Doble Engineering Company - 123 Felton Street, Marlboro, MA 01752

APPARATUS DETAIL SAMPLING INFORMATION

TRANSFORMER Serial Number: 83JL073026

Temp Rise C: Cooling:

Preservation:

Limit Set: Doble

Sampled By:

Equipment No:

Max KV: Max MVA:

1 or 3 Phase:

Syringe No: Misc. ID:

Sample Point: Bottom

XFMR/TRN Name:

Manufacturer: Westinghouse Electric

XFMR/TRN Type: Design Type:

Liquid Type: Work Order: Volume: Sample Date: 10/04/2020 Vol Units: Sample Time: 2:35 pm

Top Oil Temp C: Humidity: Amb Temp C:

Year Made:

Substation:

Sampling Reason:

244916-001 83JL073026 Sample Id: Serial Number: Misc Id:

Miscellaneous Tests

	Sample Date:	10/4/2020
	Analysis Date:	10/5/2020
	Doble Sample Id:	244916-001
	Top Oil Temperature:	
PCB Content	D4059 (ppm)^	<2
Aroclor Detected	٨	ND

[^]These samples were performed under the Doble and Morgan Schaffer laboratories ISO 17025 accreditation. (Accreditation Date: 10/1/2018)

Comments: This sample is considered to be 'Non-PCB' (<50 ppm) per EPA regulations listed in 40 CFR part 761.

^{*}Imported results from non-Doble or Morgan Schaffer sources, the accuracy of the results cannot be determined

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Matt Abraham Tighe & Bond 120 Front Street, Suite 7 Worcester, MA 01608

RE: MEC - 131 Morse St Foxborough MA (N-5067-084) ESS Laboratory Work Order Number: 21C0376

This signed Certificate of Analysis is our approved release of your analytical results. These results are only representative of sample aliquots received at the laboratory. ESS Laboratory expects its clients to follow all regulatory sampling guidelines. Beginning with this page, the entire report has been paginated. This report should not be copied except in full without the approval of the laboratory. Samples will be disposed of thirty days after the final report has been delivered. If you have any questions or concerns, please feel free to call our Customer Service Department.

Laurel Stoddard Laboratory Director REVIEWED

By ESS Laboratory at 4:17 pm, Mar 17, 2021

Analytical Summary

The project as described above has been analyzed in accordance with the ESS Quality Assurance Plan. This plan utilizes the following methodologies: US EPA SW-846, US EPA Methods for Chemical Analysis of Water and Wastes per 40 CFR Part 136, APHA Standard Methods for the Examination of Water and Wastewater, American Society for Testing and Materials (ASTM), and other recognized methodologies. The analyses with these noted observations are in conformance to the Quality Assurance Plan. In chromatographic analysis, manual integration is frequently used instead of automated integration because it produces more accurate results.

The test results present in this report are in compliance with TNI and relative state standards, and/or client Quality Assurance Project Plans (QAPP). The laboratory has reviewed the following: Sample Preservations, Hold Times, Initial Calibrations, Continuing Calibrations, Method Blanks, Blank Spikes, Blank Spike Duplicates, Duplicates, Matrix Spikes, Matrix Spike Duplicates, Surrogates and Internal Standards. Any results which were found to be outside of the recommended ranges stated in our SOPs will be noted in the Project Narrative.

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Client Project ID: MEC - 131 Morse St Foxborough MA ESS Laboratory Work Order: 21C0376

SAMPLE RECEIPT

The following samples were received on March 10, 2021 for the analyses specified on the enclosed Chain of Custody Record.

To achieve CAM compliance for MCP data, ESS Laboratory has reviewed all QA/QC Requirements and Performance Standards listed in each method. Holding times and preservation have also been reviewed. All CAM requirements have been performed and achieved unless noted in the project narrative.

Each method has been set-up in the laboratory to reach required MCP standards. The methods for aqueous VOA and Soil Methanol VOA have known limitations for certain analytes. The regulatory standards may not be achieved due to these limitations. In addition, for all methods, matrix interferences, dilutions, and %Solids may elevate method reporting limits above regulatory standards. ESS Laboratory can provide, upon request, a Limit Checker (regulatory standard comparison spreadsheet) electronic deliverable which will highlight these exceedances.

Question I: All samples for EPH were analyzed for a subset of the required MCP list per the client's request.

GC-FID Fingerprint

Sample Emulsified Product (21C0376-01) contained a mixture of material eluting in the mid to heavy molecular weight ranges of the chromatogram. This material is similar to a combination of near equal parts of transformer oil and a heavier molecular weight material eluting in the lubricating oil range. Examples of this heavier material are waste, lubricating and motor oils.

<u>Lab Number</u> 21C0376-01

Sample Name
Emulsified Product

Matrix Aqueous Analysis 8100M

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

Service

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Client Project ID: MEC - 131 Morse St Foxborough MA ESS Laboratory Work Order: 21C0376

PROJECT NARRATIVE

No unusual observations noted.

End of Project Narrative.

DATA USABILITY LINKS

To ensure you are viewing the most current version of the documents below, please clear your internet cookies for www.ESSLaboratory.com. Consult your IT Support personnel for information on how to clear your internet cookies.

Definitions of Quality Control Parameters

Semivolatile Organics Internal Standard Information

Semivolatile Organics Surrogate Information

Volatile Organics Internal Standard Information

Volatile Organics Surrogate Information

EPH and VPH Alkane Lists

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Client Project ID: MEC - 131 Morse St Foxborough MA ESS Laboratory Work Order: 21C0376

CURRENT SW-846 METHODOLOGY VERSIONS

Analytical Methods

1010A - Flashpoint

6010C - ICP

6020A - ICP MS

7010 - Graphite Furnace

7196A - Hexavalent Chromium

7470A - Aqueous Mercury

7471B - Solid Mercury

8011 - EDB/DBCP/TCP

8015C - GRO/DRO

8081B - Pesticides

8082A - PCB

8100M - TPH

8151A - Herbicides

8260B - VOA

8270D - SVOA

8270D SIM - SVOA Low Level

9014 - Cyanide

9038 - Sulfate

9040C - Aqueous pH

9045D - Solid pH (Corrosivity)

9050A - Specific Conductance

9056A - Anions (IC)

9060A - TOC

9095B - Paint Filter

MADEP 04-1.1 - EPH

MADEP 18-2.1 - VPH

Prep Methods

3005A - Aqueous ICP Digestion

3020A - Aqueous Graphite Furnace / ICP MS Digestion

3050B - Solid ICP / Graphite Furnace / ICP MS Digestion

3060A - Solid Hexavalent Chromium Digestion

3510C - Separatory Funnel Extraction

3520C - Liquid / Liquid Extraction

3540C - Manual Soxhlet Extraction

3541 - Automated Soxhlet Extraction

3546 - Microwave Extraction

3580A - Waste Dilution

5030B - Aqueous Purge and Trap

5030C - Aqueous Purge and Trap

5035A - Solid Purge and Trap

SW846 Reactivity Methods 7.3.3.2 (Reactive Cyanide) and 7.3.4.1 (Reactive Sulfide) have been withdrawn by EPA. These methods are reported per client request and are not NELAP accredited.

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Client Project ID: MEC - 131 Morse St Foxborough MA

Client Sample ID: Emulsified Product

Date Sampled: 03/09/21 12:30

Percent Solids: N/A Initial Volume: 10

Final Volume: 1

Extraction Method: 3510C

ESS Laboratory Work Order: 21C0376 ESS Laboratory Sample ID: 21C0376-01

Sample Matrix: Aqueous

Units: ug/L Analyst: TLW

Prepared: 3/11/21 16:28

8100M Total Petroleum Hydrocarbons

Analyte Total Petroleum Hydrocarbons Fingerprint	Results (MRL) 16400 (10000) Resembles: See Narra	MDL tive	Method 8100M	<u>Limit</u>	<u>DF</u> 1	Analyzed 03/16/21 13:33	Sequence D1C0277	Batch DC11107
	%.	Recovery	Qualifier	Limits				
Surrogate: O-Terphenyl		123 %		<i>40-140</i>				

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181 Dependability

Quality

Fax: 401-461-4486 Service

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Batch DC11107 - 3510C

Client Project ID: MEC - 131 Morse St Foxborough MA ESS Laboratory Work Order: 21C0376

Quality Control Data

				Spike	Source		%REC		RPD	
Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier

8100M Total Petroleum Hydrocarbons

Blank									
Decane (C10)	ND	5.00	ug/L						
Docosane (C22)	ND	5.00	ug/L						
Dodecane (C12)	ND	5.00	ug/L						
Eicosane (C20)	ND	5.00	ug/L						
Hexacosane (C26)	ND	5.00	ug/L						
Hexadecane (C16)	ND	5.00	ug/L						
Hexatriacontane (C36)	ND	5.00	ug/L						
Nonadecane (C19)	ND	5.00	ug/L						
Nonane (C9)	ND	5.00	ug/L						
Octacosane (C28)	ND	5.00	ug/L						
Octadecane (C18)	ND	5.00	ug/L						
Tetracosane (C24)	ND	5.00	ug/L						
Tetradecane (C14)	ND	5.00	ug/L						
Total Petroleum Hydrocarbons	ND	100	ug/L						
Triacontane (C30)	ND	5.00	ug/L						
		5.00							
Surrogate: O-Terphenyl	103		ug/L	100.0	103	40-140			
LCS									
Decane (C10)	35.4	5.00	ug/L	50.00	71	40-140			
Docosane (C22)	43.0	5.00	ug/L	50.00	86	40-140			
Dodecane (C12)	40.9	5.00	ug/L	50.00	82	40-140			
Eicosane (C20)	43.0	5.00	ug/L	50.00	86	40-140			
Hexacosane (C26)	43.0	5.00	ug/L	50.00	86	40-140			
Hexadecane (C16)	42.5	5.00	ug/L	50.00	85	40-140			
Hexatriacontane (C36)	48.8	5.00	ug/L	50.00	98	40-140			
Nonadecane (C19)	43.0	5.00	ug/L	50.00	86	40-140			
Nonane (C9)	30.1	5.00	ug/L	50.00	60	30-140			
Octacosane (C28)	43.1	5.00	ug/L	50.00	86	40-140			
Octadecane (C18)	42.5	5.00	ug/L	50.00	85	40-140			
Tetracosane (C24)	43.2	5.00	ug/L	50.00	86	40-140			
Tetradecane (C14)	42.1	5.00	ug/L	50.00	84	40-140			
Fotal Petroleum Hydrocarbons	605	100	ug/L	700.0	86	40-140			
Friacontane (C30)	42.6	5.00	ug/L	50.00	85	40-140			
	·		<u> </u>						
Surrogate: O-Terphenyl	92.0		ug/L	100.0	92	40-140			
LCS Dup									
Decane (C10)	44.1	5.00	ug/L	50.00	88	40-140	22	25	
Docosane (C22)	54.8	5.00	ug/L	50.00	110	40-140	24	25	
Dodecane (C12)	51.6	5.00	ug/L	50.00	103	40-140	23	25	
Eicosane (C20)	54.8	5.00	ug/L	50.00	110	40-140	24	25	
Hexacosane (C26)	54.8	5.00	ug/L	50.00	110	40-140	24	25	
Hexadecane (C16)	53.7	5.00	ug/L	50.00	107	40-140	23	25	
Hexatriacontane (C36)	60.8	5.00	ug/L	50.00	122	40-140	22	25	
Nonadecane (C19)	54.4	5.00	ug/L	50.00	109	40-140	23	25	

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

◆ Service

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Client Project ID: MEC - 131 Morse St Foxborough MA ESS Laboratory Work Order: 21C0376

Quality Control Data

Result	MRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qualifier
	8100M Tota	al Petroleun	n Hydroca	rbons					
36.5	5.00	ug/L	50.00		73	30-140	19	25	
54.8	5.00	ug/L	50.00		110	40-140	24	25	
54.1	5.00	ug/L	50.00		108	40-140	24	25	
54.9	5.00	ug/L	50.00		110	40-140	24	25	
53.3	5.00	ug/L	50.00		107	40-140	23	25	
769	100	ug/L	700.0		110	40-140	24	25	
54.3	5.00	ug/L	50.00		109	40-140	24	25	
	36.5 54.8 54.1 54.9 53.3 769	36.5 5.00 54.8 5.00 54.1 5.00 54.9 5.00 53.3 5.00 769 100	36.5 5.00 ug/L 54.8 5.00 ug/L 54.1 5.00 ug/L 54.9 5.00 ug/L 53.3 5.00 ug/L 769 100 ug/L	Result MRL Units Level 8100M Total Petroleum Hydroca 36.5 5.00 ug/L 50.00 54.8 5.00 ug/L 50.00 54.1 5.00 ug/L 50.00 54.9 5.00 ug/L 50.00 53.3 5.00 ug/L 50.00 769 100 ug/L 700.0	Result MRL Units Level Result 8100M Total Petroleum Hydrocarbons 36.5 5.00 ug/L 50.00 54.8 5.00 ug/L 50.00 54.1 5.00 ug/L 50.00 54.9 5.00 ug/L 50.00 53.3 5.00 ug/L 50.00 769 100 ug/L 700.0	Result MRL Units Level Result %REC 8100M Total Petroleum Hydrocarbons 36.5 5.00 ug/L 50.00 73 54.8 5.00 ug/L 50.00 110 54.1 5.00 ug/L 50.00 108 54.9 5.00 ug/L 50.00 110 53.3 5.00 ug/L 50.00 107 769 100 ug/L 700.0 110	Result MRL Units Level Result %REC Limits 8100M Total Petroleum Hydrocarbons 36.5 5.00 ug/L 50.00 73 30-140 54.8 5.00 ug/L 50.00 110 40-140 54.1 5.00 ug/L 50.00 108 40-140 54.9 5.00 ug/L 50.00 110 40-140 53.3 5.00 ug/L 50.00 107 40-140 769 100 ug/L 700.0 110 40-140	Result MRL Units Level Result %REC Limits RPD 8100M Total Petroleum Hydrocarbons 36.5 5.00 ug/L 50.00 73 30-140 19 54.8 5.00 ug/L 50.00 110 40-140 24 54.1 5.00 ug/L 50.00 108 40-140 24 54.9 5.00 ug/L 50.00 110 40-140 24 53.3 5.00 ug/L 50.00 107 40-140 23 769 100 ug/L 700.0 110 40-140 24	Result MRL Units Level Result %REC Limits RPD Limit 8100M Total Petroleum Hydrocarbons 36.5 5.00 ug/L 50.00 73 30-140 19 25 54.8 5.00 ug/L 50.00 110 40-140 24 25 54.1 5.00 ug/L 50.00 108 40-140 24 25 54.9 5.00 ug/L 50.00 110 40-140 24 25 53.3 5.00 ug/L 50.00 107 40-140 23 25 769 100 ug/L 700.0 110 40-140 24 25

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Client Project ID: MEC - 131 Morse St Foxborough MA ESS Laboratory Work Order: 21C0376

Notes and Definitions

Z-01	Resembles: See Narrative
U	Analyte included in the analysis, but not detected
ND	Analyte NOT DETECTED at or above the MRL (LOQ), LOD for DoD Reports, MDL for J-Flagged Analytes
dry	Sample results reported on a dry weight basis
RPD	Relative Percent Difference
) (D)	M.A. IDA A. T. Y.

RPD	Relative Percent Difference
MDL	Method Detection Limit
MRL	Method Reporting Limit
LOD	Limit of Detection
LOQ	Limit of Quantitation
DL	Detection Limit
I/V	Initial Volume
F/V	Final Volume

	ξ	}	Subcontracted	analysis;	see attached	report
--	---	---	---------------	-----------	--------------	--------

Range result excludes concentrations of surrogates and/or internal standards eluting in that range.

2 Range result excludes concentrations of target analytes eluting in that range.
3 Range result excludes the concentration of the C9-C10 aromatic range.

Avg Results reported as a mathematical average.

NR No Recovery

[CALC] Calculated Analyte

SUB Subcontracted analysis; see attached report

RL Reporting Limit

EDL Estimated Detection Limit
MF Membrane Filtration
MPN Most Probably Number
TNTC Too numerous to Count
CFU Colony Forming Units

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Client Project ID: MEC - 131 Morse St Foxborough MA ESS Laboratory Work Order: 21C0376

ESS LABORATORY CERTIFICATIONS AND ACCREDITATIONS

ENVIRONMENTAL

Rhode Island Potable and Non Potable Water: LAI00179 http://www.health.ri.gov/find/labs/analytical/ESS.pdf

Connecticut Potable and Non Potable Water, Solid and Hazardous Waste: PH-0750 http://www.ct.gov/dph/lib/dph/environmental_health/environmental_laboratories/pdf/OutofStateCommercialLaboratories.pdf

Maine Potable and Non Potable Water, and Solid and Hazardous Waste: RI00002 http://www.maine.gov/dhhs/mecdc/environmental-health/dwp/partners/labCert.shtml

Massachusetts Potable and Non Potable Water: M-RI002 http://public.dep.state.ma.us/Labcert/Labcert.aspx

New Hampshire (NELAP accredited) Potable and Non Potable Water, Solid and Hazardous Waste: 2424 http://des.nh.gov/organization/divisions/water/dwgb/nhelap/index.htm

New York (NELAP accredited) Non Potable Water, Solid and Hazardous Waste: 11313 http://www.wadsworth.org/labcert/elap/comm.html

New Jersey (NELAP accredited) Non Potable Water, Solid and Hazardous Waste: RI006 http://datamine2.state.nj.us/DEP_OPRA/OpraMain/pi_main?mode=pi_by_site&sort_order=PI_NAMEA&Select+a+Site:=58715

United States Department of Agriculture Soil Permit: P330-12-00139

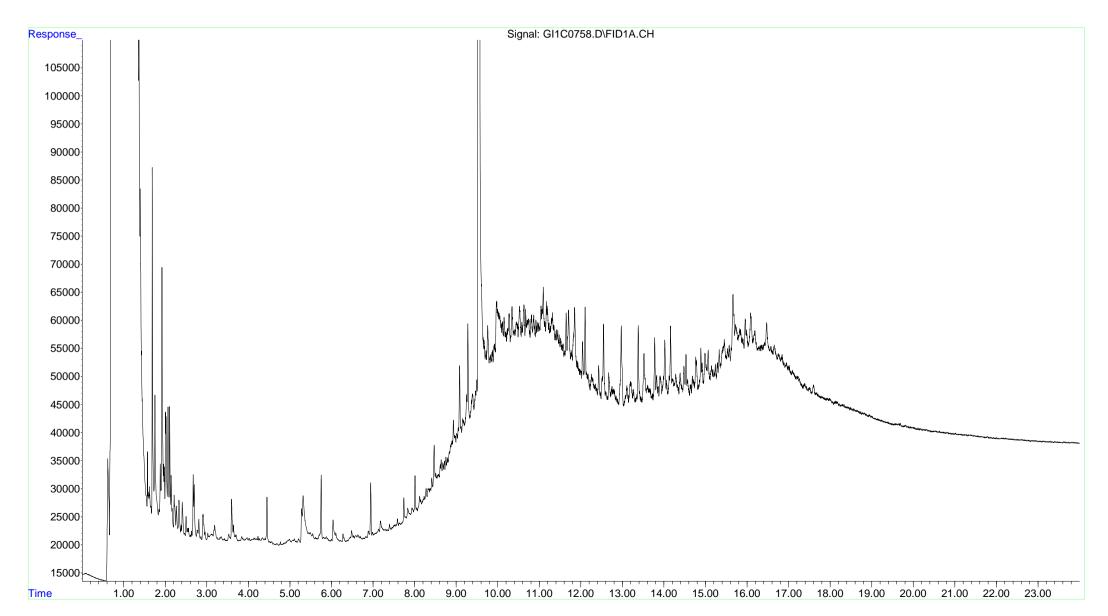
Pennsylvania: 68-01752

 $\underline{http://www.dep.pa.gov/Business/Other Programs/Labs/Pages/Laboratory-Accreditation-Program.aspx}$

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

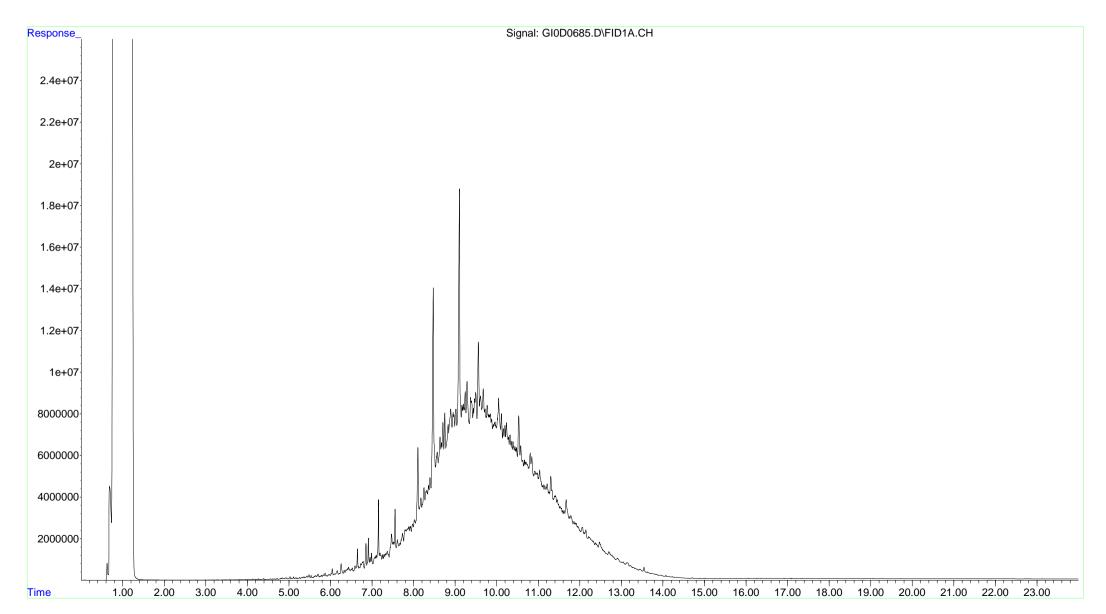

File :Q:\SVOA\GC9_GK\Data\031621\GI1C0758.D

Operator : TLW

Acquired : 16 Mar 2021 1:33 pm using AcqMethod TPH9ACQF.M

Instrument : SVOAGC9
Sample Name: 21C0376-01

Misc Info : Vial Number: 3

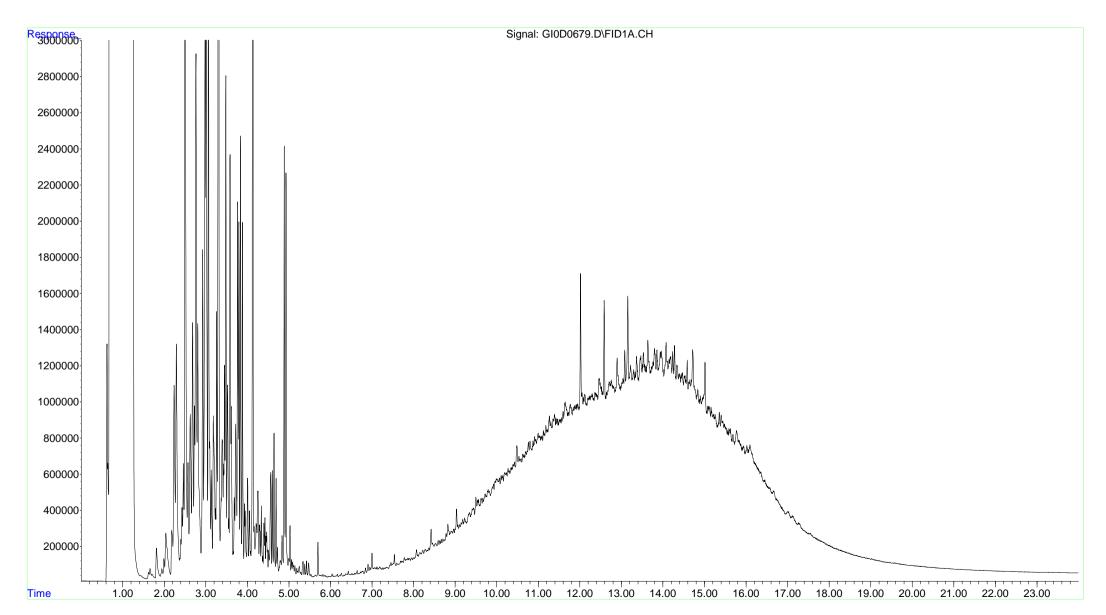

File :Q:\SVOA\GC9_GK\FP Standards\FP Overlay 042820\GI0D0685.D

Operator : CAD

Acquired : 29 Apr 2020 1:21 am using AcqMethod TPH9T1.M

Instrument : SVOAGC9
Sample Name: Transformer Oil

Misc Info : Vial Number: 29


File :Q:\SVOA\GC9_GK\FP Standards\FP Overlay 042820\GI0D0679.D

Operator : CAD

Acquired : 28 Apr 2020 10:05 pm using AcqMethod TPH9T1.M

Instrument : SVOAGC9
Sample Name: Used Motor Oil

Misc Info : Vial Number: 23

ESS Laboratory Sample and Cooler Receipt Checklist

Client: Tighe & Bond - KPB/TB	ESS Project ID: 21C0376	
Shipped/Delivered Via: ESS Courier	Date Received: 3/10/2021 Project Due Date: 3/15/2021	
	Days for Project: 3 Day	
1. Air bill manifest present? No NA NA	6. Does COC match bottles?	Yes
Were custody seals present?	7. Is COC complete and correct? 8. Were samples received intact?	Yes
3. Is radiation count <100 CPM? Yes]	
4. Is a Cooler Present? Yes Temp: 3.2 Iced with: Ice	9. Were labs informed about short holds & rushes? 10. Were any analyses received outside of hold time?	es/No/NA es/No
5. Was COC signed and dated by client? Yes		
11. Any Subcontracting needed? ESS Sample IDs: Analysis: TAT:	12. Were VOAs received? a. Air bubbles in aqueous VOAs? b. Does methanol cover soil completely?	Yes /No / NA
13. Are the samples properly preserved? a. If metals preserved upon receipt: b. Low Level VOA vials frozen: Sample Receiving Notes:	:: Time: By: :: Time: By:	
Sample Receiving Notes.	····	
14. Was there a need to contact Project Manager? a. Was there a need to contact the client? Who was contacted? Date:	Yes / Ne Yes / No Time: By:	
Sample Container Proper Air Bubbles Sufficient Number ID Container Present Volume	Container Type Preservative Record pH (Cyanide Pesticides)	and 608
1 142114 Yes N/A Yes	8 oz jar NP	
2nd Review Were all containers scanned into storage/lab? Are barcode labels on correct containers? Are all Flashpoint stickers attached/container ID # circled? Are all Hex Chrome stickers attached? Are all QC stickers attached? Are VOA stickers attached if bubbles noted?	Initials Yes / No Yes / No NA Yes / No NA Yes / No NA Yes / No NA	
Completed By: Completed	_ Date & Time:	
Reviewed By:		

185 Frances Avenue Cranston, RI 02921

		CHAI	N OF CUS	TODY		ESS Lab#	210	SQ.	760	Pa	ge /	of	
	Turn Time	□>5 42 5	□ 4 ⊠ 3	1 2 1 1	☐ Same Day	ELEC	FRONIC	DELIV	ERABLES	(Final	Reports	are PI	DF)
	Regulatory State:	MA	Criteria:	5-1/5-2,	15-3	☑ Limit Che	cker	☐ Sta	ate Forms		EQuIS		
			ect for any of the	following?:		⊠ Excel		□ На	rd Copy	/23	Enviro I	ata	
	□ CT RCP	М МА МСР	□ RGP	Permit	□ 401 WQ	☐ CLP-Like	Package	□ Ot	her (Specif	y) →	-		
Ė		PROJE	CT INFORM	IATION			REC	QUEST	ED ANA	LYSE	S		
			~ ,			- 		1 1	1 1 1		I		

1.76		Phone:	401-461-7181	Regulatory State:	MH Criteria:	5-1/5-2/	5-3	•	imit Checker		ate Form	_	J EQu			
TASK			01-461-4486		Is this project for any of the	e following?:		⊠ E			ard Copy			iro Data		
LABORA	ey .	www.essla	aboratory.com	☐ CT RCP	MA MCP □ RGP	☐ Permit	□ 401 WQ	□с	LP-Like Package	_						
(CLIENT I	NFORMA	TION		PROJECT INFORM				RE	QUEST	TED A	ALY	SES			
	Tishe +			Project Name:	131 Morre St. Foxon	out MA	Client									To
	120 Fro			Project Location:	11		acknowledges	1						. [12
	uster m		•	Project Number:	N-5067-089		that sampling is	2						.		l m
Phone:				Project Manager:	Kem wir / Matthe	w Abruhum	compliant with	2								Total Number of Bottles
		Kulenis 27	she bund com	Bill to:			all EPA / State regulatory	12								of H
	nhan 2 Ty			PO#:			programs	4								Ě
				Quote#:			programme.	H								ß
ESS Lab	Collection		Sample Type	Sample Matrix	Sa	imple ID		0/								
(I)	Date	Time		0	Emploified Product			X								
	3/9/21	1230	6		EMUSIFIED PROCES			-	- - - - - - - - - - 		 	1 1				
										++	╁	+	+			<u> </u>
								-								
					' '							_				L-
<u> </u>																
												T				1
ļ								┝╌┼╴	- - - -	+++	 	1 1				
! !								├┈┼		++	╌┼╾┼╴	╅				
												-				├
																
<u> </u>																
	• 70	A.C. A.	Coccette AG-Ami	ber Glass B-BOD Bo	ttle C-Cubitainer J-Jar O-C	Other P-Poly S-S	Sterile V-Vial									
	ainer Type:				5-500 mL 6-1L 7-VOA 8-2	oz 9-4 oz 10-8 e	oz 11-Other*								<u> </u>	1
	er Volume: ation Code:	1-Non Pr	reserved 2-HCl 3-H2S	O4 4-HNO3 5-NaOH	6-Methanol 7-Na2S2O3 8-ZnAce, N	aOH 9-NH4Cl 10-E	OI H2O 11-Other*									<u> </u>
	ampled by :	1-11011 1	0301702 2 2201 0 111			Chain	needs to be fil	led (out neatly ar	d com	pletel	y for	on tir	ne deli	ivery.	
	oratory Use	Only	Comments:	* Please specify "6	Other" preservative and cont				samples subm			100		ssolved F		
ļ			Comments.	A reade opening	F (M1111 1111 1111 1111 1111 1111 11	~ *			S Laboratory's				1718	MINAT		
Cooler Tem	perature (°C):	3.2	İ							itions.] Li	ab Filter	
							12 (6)		Date	1.12.1	Time		Rece	ived by (Signatu	ire)
. Relinqu	ished by (Si	gnature)	Date	Time	Received by (Signature)	Relinquist	red by (Signature)						1		3/10/	
			2/11/2	930	Remoderate	Kutne	you to		3/10/21	9	735	. [Sea	~~	>9 16	
10	- V		3/10/21	""			red by (Signature)		Date		Time		Rece	ived by (
Relingt	rished by (Si	gnature)	Date	Time	Received by (Signature)	Keimquisi	ied ný (englisture)		Date							
1	<i>a</i>	~	3/0/21	18:23	Taylor Downs	1										
1 1/2	Jus 5	-2 >	110/4/	10,0>	1823 3110P21			L						Dogg 14	of 14	

Page 14 of 14

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Matt Abraham Tighe & Bond 4 Barlows Landing Rd., Unit 15 Pocasset, MA 02559

RE: 131 Morse St. Foxborough MA (N-5067-084) ESS Laboratory Work Order Number: F210005

This signed Certificate of Analysis is our approved release of your analytical results. These results are only representative of sample aliquots received at the laboratory. ESS Laboratory expects its clients to follow all regulatory sampling guidelines. Beginning with this page, the entire report has been paginated. This report should not be copied except in full without the approval of the laboratory. Samples will be disposed of thirty days after the final report has been delivered. If you have any questions or concerns, please feel free to call our Customer Service Department.

Laurel Stoddard

Laboratory Director

REVIEWED

By ESS Laboratory at 12:40 pm, Apr 13, 2021

Analytical Summary

The project as described above has been analyzed in accordance with the ESS Quality Assurance Plan. This plan utilizes the following methodologies: US EPA SW-846, US EPA Methods for Chemical Analysis of Water and Wastes per 40 CFR Part 136, APHA Standard Methods for the Examination of Water and Wastewater, American Society for Testing and Materials (ASTM), and other recognized methodologies. The analyses with these noted observations are in conformance to the Quality Assurance Plan. In chromatographic analysis, manual integration is frequently used instead of automated integration because it produces more accurate results.

The test results present in this report are in compliance with TNI and relative state standards, and/or client Quality Assurance Project Plans (QAPP). The laboratory has reviewed the following: Sample Preservations, Hold Times, Initial Calibrations, Continuing Calibrations, Method Blanks, Blank Spikes, Blank Spike Duplicates, Duplicates, Matrix Spikes, Matrix Spike Duplicates, Surrogates and Internal Standards. Any results which were found to be outside of the recommended ranges stated in our SOPs will be noted in the Project Narrative.

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Client Project ID: 131 Morse St. Foxborough MA ESS Laboratory Work Order: F210005

SAMPLE RECEIPT

The following samples were received on April 02, 2021 for the analyses specified on the enclosed Chain of Custody Record.

Lab Number	Sample Name	Matrix	Analysis
F210005-01	emulsified product 4/2/21	Net	8015 Mod
F210005-02	PX-5	Soil	8015 Mod

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

Service

Client Name: Tighe & Bond

Client Project ID: 131 Morse St. Foxborough, MA ESS Laboratory Work Order: F210005

PROJECT NARRATIVE

1 net sample was received on 04-02-2021. 1 reference soil sample was received on 03/02/2021 and held in frozen storage.

The net and soil sample were prepared by solvent extraction (EPA 3570) using dichloromethane (DCM). The extracts were spiked with internal standard and analyzed by GC/FID (EPA 8015M) for fingerprinting.

Total Petroleum Hydrocarbons (GC-FID Fingerprint)

Sample emulsified product 4/2/21 (F210005-01) contained material eluting in the n-tetradecane (c14) to n-tetracontane (c40) hydrocarbon range. The material present appears to be similar to a dielectric fluid/transformer oil. The distribution of alkanes and slight unresolved complex mixture (UCM) at the end of the chromatogram indicates the presence of humic material. It was noted prior to extraction that the sheen sampler had the presence of soil/sediment and plant material.

The sample was compared to reference soil sample PX-5 (F210005-02). The material present in both samples appear to be from similar sources. Chromatographic differences could be contributed but not limited to the differences in matrix, solubility and water washing of the material present on the sheen sampler and potential weathering differences of each sample. These differences do not allow for a definitive chromatographic determination to be made.

Service

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Client Project ID: 131 Morse St. Foxborough MA ESS Laboratory Work Order: F210005

PROJECT NARRATIVE

All quality control parameters met the specified criteria.

End of Project Narrative.

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

Service

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Client Project ID: 131 Morse St. Foxborough MA ESS Laboratory Work Order: F210005

CURRENT SW-846 METHODOLOGY VERSIONS

Analytical Methods

1010A - Flashpoint

6010C - ICP

6020A - ICP MS

7010 - Graphite Furnace

7196A - Hexavalent Chromium

7470A - Aqueous Mercury

7471B - Solid Mercury

8011 - EDB/DBCP/TCP

8015B Mod - TPH by GCFID

8015C - GRO/DRO

8081B - Pesticides

8082A - PCB

8100M - TPH

8151A - Herbicides

8260B - VOA

8270D - SVOA

8270D Mod - Alkylated PAHs and Benzenes

8270D SIM - SVOA Low Level

9014 - Cyanide

9038 - Sulfate

9040C - Aqueous pH

9045D - Solid pH (Corrosivity)

9050A - Specific Conductance

9056A - Anions (IC)

9060A - TOC

9095B - Paint Filter

MADEP 04-1.1 - EPH / VPH

Prep Methods

3005A - Aqueous ICP Digestion

3020A - Aqueous Graphite Furnace / ICP MS Digestion

3050B - Solid ICP / Graphite Furnace / ICP MS Digestion

3060A - Solid Hexavalent Chromium Digestion

3510C - Separatory Funnel Extraction

3511 - Microsolvent Extraction Aqueous

3520C - Liquid / Liquid Extraction

3540C - Manual Soxhlet Extraction

3541 - Automated Soxhlet Extraction

3546 - Microwave Extraction

3570 - Microsolvent Extraction Soild

3580A - Waste Dilution

5030B - Aqueous Purge and Trap

5030C - Aqueous Purge and Trap

5035 - Solid Purge and Trap

SW846 Reactivity Methods 7.3.3.2 (Reactive Cyanide) and 7.3.4.1 (Reactive Sulfide) have been withdrawn by EPA. These methods are reported per client request and are not NELAP accredited.

Service

Page 5 of 26

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Client Project ID: 131 Morse St. Foxborough MA Client Sample ID: emulsified product 4/2/21

Date Sampled: 04/02/21 10:00

Percent Solids: N/A Initial Volume: 1 Final Volume: 2

Extraction Method: 3570

ESS Laboratory Work Order: F210005 ESS Laboratory Sample ID: F210005-01

Sample Matrix: Net

Units: ug/Net Analyst: NXL

Prepared: 4/7/21 6:50

Saturated Hydrocarbons by GC/FID

Analyte	Results (RL)	EDL	Method	<u>Limit</u>	<u>DF</u>	Analyst	Analy	<u>zed</u>	Sequence	Batch
C-8	ND (10.0)	5.00	8015 Mod		5	NXL	04/08/21	9:02	F1D0005	FD10701
C-9	ND (10.0)	5.00	8015 Mod		5	NXL	04/08/21	9:02	F1D0005	FD10701
C-10	ND (10.0)	5.00	8015 Mod		5	NXL	04/08/21	9:02	F1D0005	FD10701
C-11	ND (10.0)	5.00	8015 Mod		5	NXL	04/08/21	9:02	F1D0005	FD10701
C-12	ND (10.0)	5.00	8015 Mod		5	NXL	04/08/21	9:02	F1D0005	FD10701
C-13	ND (10.0)	5.00	8015 Mod		5	NXL	04/08/21	9:02	F1D0005	FD10701
2,6,10-trimethyldodecane (1380)	ND (10.0)	5.00	8015 Mod		5	NXL	04/08/21	9:02	F1D0005	FD10701
C-14	ND (10.0)	5.00	8015 Mod		5	NXL	04/08/21	9:02	F1D0005	FD10701
2,6,10-trimethyltridecane (1470)	ND (10.0)	5.00	8015 Mod		5	NXL	04/08/21	9:02	F1D0005	FD10701
C-15	ND (10.0)	5.00	8015 Mod		5	NXL	04/08/21	9:02	F1D0005	FD10701
C-16	ND (10.0)	5.00	8015 Mod		5	NXL	04/08/21	9:02	F1D0005	FD10701
2,6,10-trimethylpentadecane (1650)	J 5.36 (10.0)	5.00	8015 Mod		5	NXL	04/08/21	9:02	F1D0005	FD10701
C-17	ND (10.0)	5.00	8015 Mod		5	NXL	04/08/21	9:02	F1D0005	FD10701
Pristane	17.4 (10.0)	5.00	8015 Mod		5	NXL	04/08/21	9:02	F1D0005	FD10701
C-18	ND (10.0)	5.00	8015 Mod		5	NXL	04/08/21	9:02	F1D0005	FD10701
Phytane	40.7 (10.0)	5.00	8015 Mod		5	NXL	04/08/21	9:02	F1D0005	FD10701
C-19	J 9.92 (10.0)	5.00	8015 Mod		5	NXL	04/08/21	9:02	F1D0005	FD10701
C-20	ND (10.0)	5.00	8015 Mod		5	NXL	04/08/21	9:02	F1D0005	FD10701
C-21	22.3 (10.0)	5.00	8015 Mod		5	NXL	04/08/21	9:02	F1D0005	FD10701
C-22	ND (10.0)	5.00	8015 Mod		5	NXL	04/08/21	9:02	F1D0005	FD10701
C-23	10.3 (10.0)	5.00	8015 Mod		5	NXL	04/08/21	9:02	F1D0005	FD10701
C-24	ND (10.0)	5.00	8015 Mod		5	NXL	04/08/21	9:02	F1D0005	FD10701
C-25	41.6 (10.0)	5.00	8015 Mod		5	NXL	04/08/21	9:02	F1D0005	FD10701
C-26	ND (10.0)	5.00	8015 Mod		5	NXL	04/08/21	9:02	F1D0005	FD10701
C-27	39.9 (10.0)	5.00	8015 Mod		5	NXL	04/08/21	9:02	F1D0005	FD10701
C-28	J 5.82 (10.0)	5.00	8015 Mod		5	NXL	04/08/21	9:02	F1D0005	FD10701
C-29	141 (10.0)	5.00	8015 Mod		5	NXL	04/08/21	9:02	F1D0005	FD10701
C-30	J 9.31 (10.0)	5.00	8015 Mod		5	NXL	04/08/21	9:02	F1D0005	FD10701
C-31	60.2 (10.0)	5.00	8015 Mod		5	NXL	04/08/21	9:02	F1D0005	FD10701
C-32	J 8.63 (10.0)	5.00	8015 Mod		5	NXL	04/08/21	9:02	F1D0005	FD10701
C-33	28.4 (10.0)	5.00	8015 Mod		5	NXL	04/08/21	9:02	F1D0005	FD10701
C-34	ND (10.0)	5.00	8015 Mod		5	NXL	04/08/21	9:02	F1D0005	FD10701

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

◆ Service

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Client Project ID: 131 Morse St. Foxborough MA Client Sample ID: emulsified product 4/2/21

Date Sampled: 04/02/21 10:00

Percent Solids: N/A Initial Volume: 1 Final Volume: 2

Extraction Method: 3570

ESS Laboratory Work Order: F210005 ESS Laboratory Sample ID: F210005-01

Sample Matrix: Net

Units: ug/Net Analyst: NXL

Prepared: 4/7/21 6:50

Saturated Hydrocarbons by GC/FID

Analyte	Results (RL)	EDL	Method	<u>Limit</u>	DF	Analyst	Analyzed	Sequence	Batch
C-35	J 8.22 (10.0)	5.00	8015 Mod		5	NXL	04/08/21 9:02	F1D0005	FD10701
C-36	ND (10.0)	5.00	8015 Mod		5	NXL	04/08/21 9:02	F1D0005	FD10701
C-37	ND (10.0)	5.00	8015 Mod		5	NXL	04/08/21 9:02	F1D0005	FD10701
C-38	ND (10.0)	5.00	8015 Mod		5	NXL	04/08/21 9:02	F1D0005	FD10701
C-39	ND (10.0)	5.00	8015 Mod		5	NXL	04/08/21 9:02	F1D0005	FD10701
C-40	ND (10.0)	5.00	8015 Mod		5	NXL	04/08/21 9:02	F1D0005	FD10701
TPH (C8-C40)	22300 (10.0)	5.00	8015 Mod		5	NXL	04/08/21 9:02	F1D0005	FD10701

%Recovery Qualifier Limits

Surrogate: o-Terphenyl 63 % 50-120

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

• Service

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Client Project ID: 131 Morse St. Foxborough MA

Client Sample ID: PX-5 Date Sampled: 02/24/21 14:20

Percent Solids: 83 Initial Volume: 2.6 Final Volume: 2

Extraction Method: 3570

ESS Laboratory Work Order: F210005 ESS Laboratory Sample ID: F210005-02

Sample Matrix: Soil Units: mg/Kg dry Analyst: NXL

Prepared: 4/7/21 6:50

Saturated Hydrocarbons by GC/FID

Analyte	Results (RL)	EDL	Method	<u>Limit</u>	<u>DF</u>	Analyst	Analyz	zed	Sequence	Batch
C-8	ND (4.63)	2.31	8015 Mod		5	NXL	04/08/21	6:14	F1D0001	FD10702
C-9	J 3.34 (4.63)	2.31	8015 Mod		5	NXL	04/08/21	6:14	F1D0001	FD10702
C-10	ND (4.63)	2.31	8015 Mod		5	NXL	04/08/21	6:14	F1D0001	FD10702
C-11	ND (4.63)	2.31	8015 Mod		5	NXL	04/08/21	6:14	F1D0001	FD10702
C-12	ND (4.63)	2.31	8015 Mod		5	NXL	04/08/21	6:14	F1D0001	FD10702
C-13	ND (4.63)	2.31	8015 Mod		5	NXL	04/08/21	6:14	F1D0001	FD10702
2,6,10-trimethyldodecane (1380)	J 2.57 (4.63)	2.31	8015 Mod		5	NXL	04/08/21	6:14	F1D0001	FD10702
C-14	ND (4.63)	2.31	8015 Mod		5	NXL	04/08/21	6:14	F1D0001	FD10702
2,6,10-trimethyltridecane (1470)	18.0 (4.63)	2.31	8015 Mod		5	NXL	04/08/21	6:14	F1D0001	FD10702
C-15	ND (4.63)	2.31	8015 Mod		5	NXL	04/08/21	6:14	F1D0001	FD10702
C-16	ND (4.63)	2.31	8015 Mod		5	NXL	04/08/21	6:14	F1D0001	FD10702
2,6,10-trimethylpentadecane (1650)	25.9 (4.63)	2.31	8015 Mod		5	NXL	04/08/21	6:14	F1D0001	FD10702
C-17	ND (4.63)	2.31	8015 Mod		5	NXL	04/08/21	6:14	F1D0001	FD10702
Pristane	53.6 (4.63)	2.31	8015 Mod		5	NXL	04/08/21	6:14	F1D0001	FD10702
C-18	ND (4.63)	2.31	8015 Mod		5	NXL	04/08/21	6:14	F1D0001	FD10702
Phytane	80.8 (4.63)	2.31	8015 Mod		5	NXL	04/08/21	6:14	F1D0001	FD10702
C-19	ND (4.63)	2.31	8015 Mod		5	NXL	04/08/21	6:14	F1D0001	FD10702
C-20	ND (4.63)	2.31	8015 Mod		5	NXL	04/08/21	6:14	F1D0001	FD10702
C-21	24.2 (4.63)	2.31	8015 Mod		5	NXL	04/08/21	6:14	F1D0001	FD10702
C-22	ND (4.63)	2.31	8015 Mod		5	NXL	04/08/21	6:14	F1D0001	FD10702
C-23	ND (4.63)	2.31	8015 Mod		5	NXL	04/08/21	6:14	F1D0001	FD10702
C-24	ND (4.63)	2.31	8015 Mod		5	NXL	04/08/21	6:14	F1D0001	FD10702
C-25	J 3.15 (4.63)	2.31	8015 Mod		5	NXL	04/08/21	6:14	F1D0001	FD10702
C-26	ND (4.63)	2.31	8015 Mod		5	NXL	04/08/21	6:14	F1D0001	FD10702
C-27	ND (4.63)	2.31	8015 Mod		5	NXL	04/08/21	6:14	F1D0001	FD10702
C-28	ND (4.63)	2.31	8015 Mod		5	NXL	04/08/21	6:14	F1D0001	FD10702
C-29	ND (4.63)	2.31	8015 Mod		5	NXL	04/08/21	6:14	F1D0001	FD10702
C-30	ND (4.63)	2.31	8015 Mod		5	NXL	04/08/21	6:14	F1D0001	FD10702
C-31	ND (4.63)	2.31	8015 Mod		5	NXL	04/08/21	6:14	F1D0001	FD10702
C-32	ND (4.63)	2.31	8015 Mod		5	NXL	04/08/21	6:14	F1D0001	FD10702
C-33	ND (4.63)	2.31	8015 Mod		5	NXL	04/08/21	6:14	F1D0001	FD10702
C-34	ND (4.63)	2.31	8015 Mod		5	NXL	04/08/21	6:14	F1D0001	FD10702

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Client Project ID: 131 Morse St. Foxborough MA

Client Sample ID: PX-5 Date Sampled: 02/24/21 14:20

Percent Solids: 83 Initial Volume: 2.6 Final Volume: 2

Extraction Method: 3570

ESS Laboratory Work Order: F210005 ESS Laboratory Sample ID: F210005-02

Sample Matrix: Soil Units: mg/Kg dry Analyst: NXL

Prepared: 4/7/21 6:50

Saturated Hydrocarbons by GC/FID

<u>Analyte</u>	Results (RL)	EDL	Method	<u>Limit</u>	<u>DF</u>	Analyst	Analyzed	Sequence	Batch
C-35	ND (4.63)	2.31	8015 Mod		5	NXL	04/08/21 6:14	F1D0001	FD10702
C-36	ND (4.63)	2.31	8015 Mod		5	NXL	04/08/21 6:14	F1D0001	FD10702
C-37	ND (4.63)	2.31	8015 Mod		5	NXL	04/08/21 6:14	F1D0001	FD10702
C-38	ND (4.63)	2.31	8015 Mod		5	NXL	04/08/21 6:14	F1D0001	FD10702
C-39	ND (4.63)	2.31	8015 Mod		5	NXL	04/08/21 6:14	F1D0001	FD10702
C-40	ND (4.63)	2.31	8015 Mod		5	NXL	04/08/21 6:14	F1D0001	FD10702
TPH (C8-C40)	36800 (4.63)	2.31	8015 Mod		5	NXL	04/08/21 6:14	F1D0001	FD10702

%Recovery Qualifier Limits

Surrogate: o-Terphenyl 89 % 50-120

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Client Project ID: 131 Morse St. Foxborough MA

ESS Laboratory Work Order: F210005

Quality Control Data

Saturated Hydrocarbons by GC/FID

Batch FD10701 - 3570										
Blank										
				Spike	Source		%REC		RPD	
Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier
C-8	ND	2.00	ug/Net							
C-9	1.43	2.00	ug/Net							J
C-10	ND	2.00	ug/Net							
C-11	ND	2.00	ug/Net							
C-12	ND	2.00	ug/Net							
C-13	ND	2.00	ug/Net							
2,6,10-trimethyldodecane (1380)	ND	2.00	ug/Net							
C-14	ND	2.00	ug/Net							
2,6,10-trimethyltridecane (1470)	ND	2.00	ug/Net							
C-15	ND	2.00	ug/Net							
C-16	ND	2.00	ug/Net							
2,6,10-trimethylpentadecane (1650)	ND	2.00	ug/Net							
C-17	ND	2.00	ug/Net							
Pristane	ND	2.00	ug/Net							
C-18	ND	2.00	ug/Net							
Phytane	ND	2.00	ug/Net							
C-19	ND	2.00	ug/Net							
C-20	ND	2.00	ug/Net							
C-21	ND	2.00	ug/Net							
C-22	ND	2.00	ug/Net							
C-23	ND	2.00	ug/Net							
C-24	ND	2.00	ug/Net							
C-25	ND	2.00	ug/Net							
C-26	ND	2.00	ug/Net							
C-27	ND	2.00	ug/Net							
C-28	ND	2.00	ug/Net							
C-29	ND	2.00	ug/Net							
C-30	ND	2.00	ug/Net							
C-31	ND	2.00	ug/Net							
C-32	ND	2.00	ug/Net							
C-33	ND	2.00	ug/Net							
C-34	ND	2.00	ug/Net							
C-35	ND	2.00	ug/Net							
C-36	ND	2.00	ug/Net							
C-37	ND	2.00	ug/Net							
C-38	ND	2.00	ug/Net							
C-39	ND	2.00	ug/Net							
C-40	ND	2.00	ug/Net							
TPH (C8-C40)	ND	2.00	ug/Net							
Surrogate: o-Terphenyl	44.7		ug/Net	50.00		89	50-120			

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Client Project ID: 131 Morse St. Foxborough MA

ESS Laboratory Work Order: F210005

Quality Control Data

Saturated Hydrocarbons by GC/FID

LCS										
				Spike	Source		%REC		RPD	
Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifie
C-8	39.1	2.00	ug/Net	50.00		78	60-130			
C-9	38.8	2.00	ug/Net	50.00		78	60-130			
C-10	40.0	2.00	ug/Net	50.00		80	60-130			
C-11	41.2	2.00	ug/Net	50.00		82	60-130			
C-12	42.0	2.00	ug/Net	50.00		84	60-130			
0-13	40.9	2.00	ug/Net	50.00		82	60-130			
C-14	40.9	2.00	ug/Net	50.00		82	60-130			
0-15	42.4	2.00	ug/Net	50.00		85	60-130			
C-16	40.4	2.00	ug/Net	50.00		81	60-130			
0-17	40.4	2.00	ug/Net	50.00		81	60-130			
Pristane	39.9	2.00	ug/Net	50.00		80	60-130			
C-18	39.0	2.00	ug/Net	50.00		78	60-130			
Phytane	40.7	2.00	ug/Net	50.00		81	60-130			
C-19	39.8	2.00	ug/Net	50.00		80	60-130			
c-20	39.0	2.00	ug/Net	50.00		78	60-130			
C-21	39.4	2.00	ug/Net	50.00		79	60-130			
C-22	37.9	2.00	ug/Net	50.00		76	60-130			
0-23	38.8	2.00	ug/Net	50.00		78	60-130			
C-24	38.9	2.00	ug/Net	50.00		78	60-130			
C-25	40.9	2.00	ug/Net	50.00		82	60-130			
C-26	38.8	2.00	ug/Net	50.00		78	60-130			
C-27	38.7	2.00	ug/Net	50.00		77	60-130			
C-28	36.8	2.00	ug/Net	50.00		74	60-130			
C-29	38.3	2.00	ug/Net	50.00		77	60-130			
C-30	38.2	2.00	ug/Net	50.00		76	60-130			
C-31	38.1	2.00	ug/Net	50.00		76	60-130			
0-32	38.1	2.00	ug/Net	50.00		76	60-130			
0-33	38.0	2.00	ug/Net	50.00		76	60-130			
C-34	38.0	2.00	ug/Net	50.00		76	60-130			
0-35	38.1	2.00	ug/Net	50.00		76	60-130			
C-36	38.2	2.00	ug/Net	50.00		76	60-130			
0-37	37.7	2.00	ug/Net	50.00		75	60-130			
C-38	38.8	2.00	ug/Net	50.00		78	60-130			
C-39	37.5	2.00	ug/Net	50.00		75	60-130			
C-40	39.2	2.00	ug/Net	50.00		78	60-130			
Surrogate: o-Terphenyl	42.9		ug/Net	50.00		86	50-120			

Page 11 of 26

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Client Project ID: 131 Morse St. Foxborough MA

ESS Laboratory Work Order: F210005

Quality Control Data

Saturated Hydrocarbons by GC/FID

Batch FD10702 - 3570										
Blank										
				Spike	Source		%REC		RPD	
Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier
C-8	ND	0.400	mg/Kg wet							
C-9	0.286	0.400	mg/Kg wet							J
C-10	0.280 ND	0.400	mg/Kg wet							,
C-10 C-11	ND ND	0.400	mg/Kg wet							
C-12	ND	0.400	mg/Kg wet							
C-13	ND	0.400	mg/Kg wet							
2,6,10-trimethyldodecane (1380)	ND	0.400	mg/Kg wet							
C-14	ND	0.400	mg/Kg wet							
2,6,10-trimethyltridecane (1470)	ND	0.400	mg/Kg wet							
C-15	ND	0.400	mg/Kg wet							
C-16	ND	0.400	mg/Kg wet							
2,6,10-trimethylpentadecane (1650)	ND	0.400	mg/Kg wet							
C-17	ND	0.400	mg/Kg wet							
Pristane	ND	0.400	mg/Kg wet							
C-18	ND	0.400	mg/Kg wet							
Phytane	ND	0.400	mg/Kg wet							
C-19	ND	0.400	mg/Kg wet							
C-20	ND	0.400	mg/Kg wet							
C-21	ND	0.400	mg/Kg wet							
C-22	ND	0.400	mg/Kg wet							
C-23	ND	0.400	mg/Kg wet							
C-24	ND	0.400	mg/Kg wet							
C-25	ND	0.400	mg/Kg wet							
C-26	ND	0.400	mg/Kg wet							
C-27	ND	0.400	mg/Kg wet							
C-28	ND	0.400	mg/Kg wet							
C-29	ND	0.400	mg/Kg wet							
C-30	ND	0.400	mg/Kg wet							
C-31	ND	0.400	mg/Kg wet							
C-32	ND	0.400	mg/Kg wet							
C-33	ND	0.400	mg/Kg wet							
C-34	ND	0.400	mg/Kg wet							
C-35	ND	0.400	mg/Kg wet							
C-36	ND	0.400	mg/Kg wet							
C-37	ND	0.400	mg/Kg wet							
C-38	ND	0.400	mg/Kg wet							
C-39	ND ND	0.400	mg/Kg wet							
C-39	ND ND	0.400	mg/Kg wet							
C-40 TPH (C8-C40)	ND ND	0.400	mg/Kg wet							
1111 (60 640)	ND	0.700	mg/kg wet							
Surrogate: o-Terphenyl	8.94		mg/Kg wet	10.00		89	50-120			

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Client Project ID: 131 Morse St. Foxborough MA

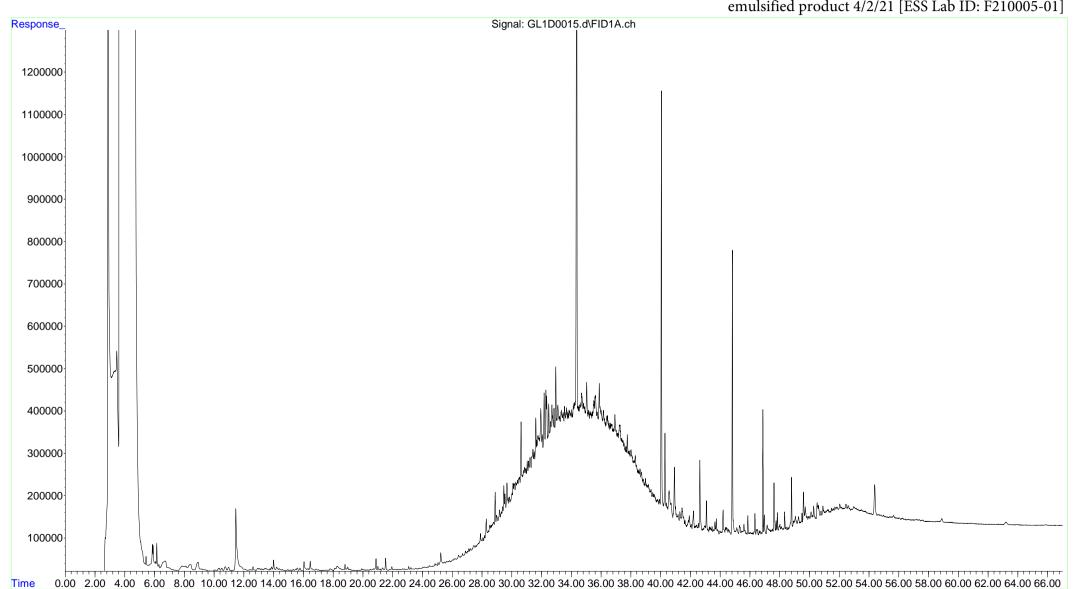
ESS Laboratory Work Order: F210005

Quality Control DataSaturated Hydrocarbons by GC/FID

Batch FD10702 - 3570										
LCS										
				Spike	Source		%REC		RPD	
Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier
C-8	7.82	0.400	mg/Kg wet	10.00		78	60-130			
C-9	7.76	0.400	mg/Kg wet	10.00		78	60-130			
C-10	8.01	0.400	mg/Kg wet	10.00		80	60-130			
C-11	8.23	0.400	mg/Kg wet	10.00		82	60-130			
C-12	8.41	0.400	mg/Kg wet	10.00		84	60-130			
C-13	8.18	0.400	mg/Kg wet	10.00		82	60-130			
C-14	8.18	0.400	mg/Kg wet	10.00		82	60-130			
C-15	8.47	0.400	mg/Kg wet	10.00		85	60-130			
C-16	8.09	0.400	mg/Kg wet	10.00		81	60-130			
C-17	8.07	0.400	mg/Kg wet	10.00		81	60-130			
Pristane	7.97	0.400	mg/Kg wet	10.00		80	60-130			
C-18	7.79	0.400	mg/Kg wet	10.00		78	60-130			
Phytane	8.15	0.400	mg/Kg wet	10.00		81	60-130			
C-19	7.95	0.400	mg/Kg wet	10.00		80	60-130			
C-20	7.80	0.400	mg/Kg wet	10.00		78	60-130			
C-21	7.89	0.400	mg/Kg wet	10.00		79	60-130			
C-22	7.58	0.400	mg/Kg wet	10.00		76	60-130			
C-23	7.77	0.400	mg/Kg wet	10.00		78	60-130			
C-24	7.78	0.400	mg/Kg wet	10.00		78	60-130			
C-25	8.18	0.400	mg/Kg wet	10.00		82	60-130			
C-26	7.75	0.400	mg/Kg wet	10.00		78	60-130			
C-27	7.75	0.400	mg/Kg wet	10.00		77	60-130			
C-28	7.36	0.400	mg/Kg wet	10.00		74	60-130			
C-29	7.67	0.400	mg/Kg wet	10.00		77	60-130			
C-30	7.64	0.400	mg/Kg wet	10.00		76	60-130			
C-31	7.63	0.400	mg/Kg wet	10.00		76	60-130			
C-32	7.62	0.400	mg/Kg wet	10.00		76	60-130			
C-33	7.60	0.400	mg/Kg wet	10.00		76	60-130			
C-34	7.61	0.400	mg/Kg wet	10.00		76	60-130			
C-35	7.63	0.400	mg/Kg wet	10.00		76	60-130			
C-36	7.65	0.400	mg/Kg wet	10.00		76	60-130			
C-37	7.55	0.400	mg/Kg wet	10.00		75	60-130			
C-38	7.76	0.400	mg/Kg wet	10.00		78	60-130			
C-39	7.49	0.400	mg/Kg wet	10.00		75	60-130			
C-40	7.85	0.400	mg/Kg wet	10.00		78	60-130			
Surrogate: o-Terphenyl	8.57		mg/Kg wet	10.00		86	50-120			

GC-FID Chromatograms

File :Q:\SVOA\GC12_GL\Data\GL0421\040721\GL1D0015.d


Operator : NXL

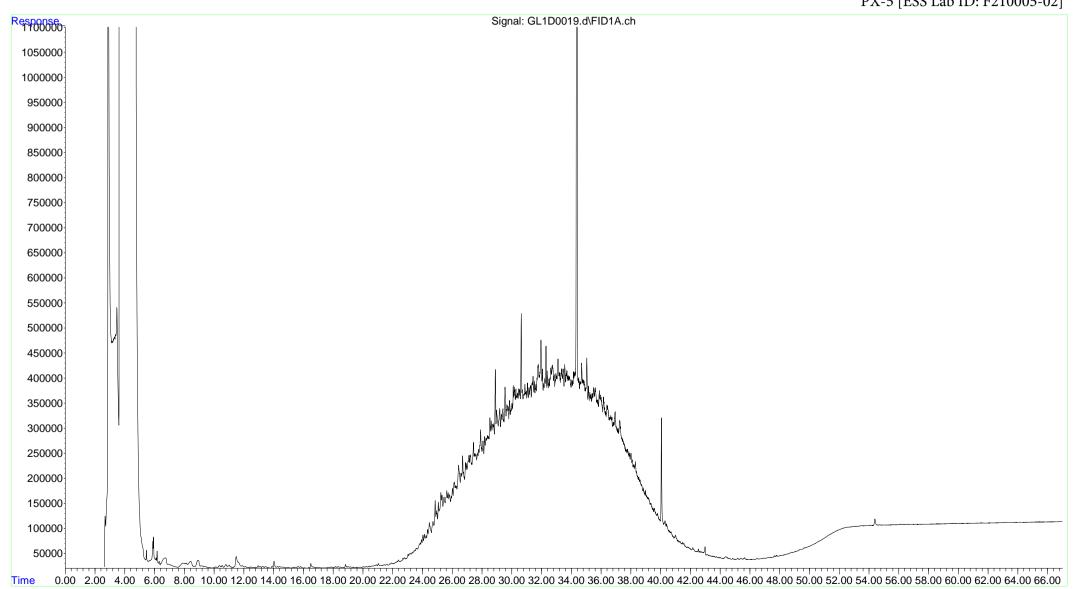
: 8 Apr 2021 Acquired 9:02 am using AcqMethod GC12-DATA-ACQUISITION-4.M

Instrument : SVOA-GC12 Sample Name: F210005-01

Misc Info : 5 Vial Number: 25

emulsified product 4/2/21 [ESS Lab ID: F210005-01]

File :Q:\SVOA\GC12_GL\Data\GL0421\040721\GL1D0019.d


Operator : NXL

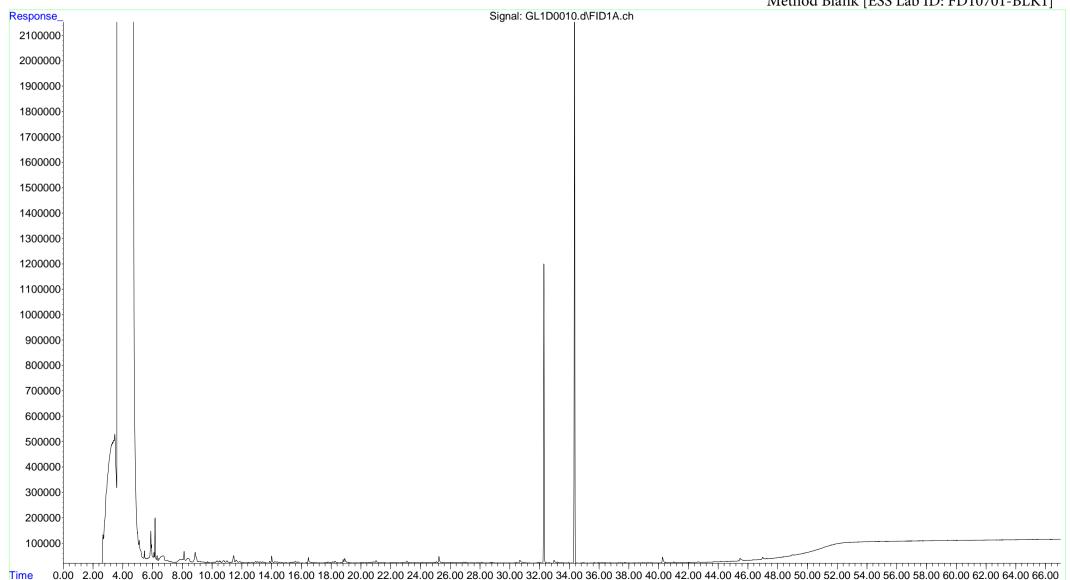
: 8 Apr 2021 Acquired 2:22 pm using AcqMethod GC12-DATA-ACQUISITION-4.M

Instrument: SVOA-GC12 Sample Name: F210005-02

Misc Info : 20 Vial Number: 24

PX-5 [ESS Lab ID: F210005-02]

File :Q:\SVOA\GC12_GL\Data\GL0421\040721\GL1D0010.d


Operator : NXL

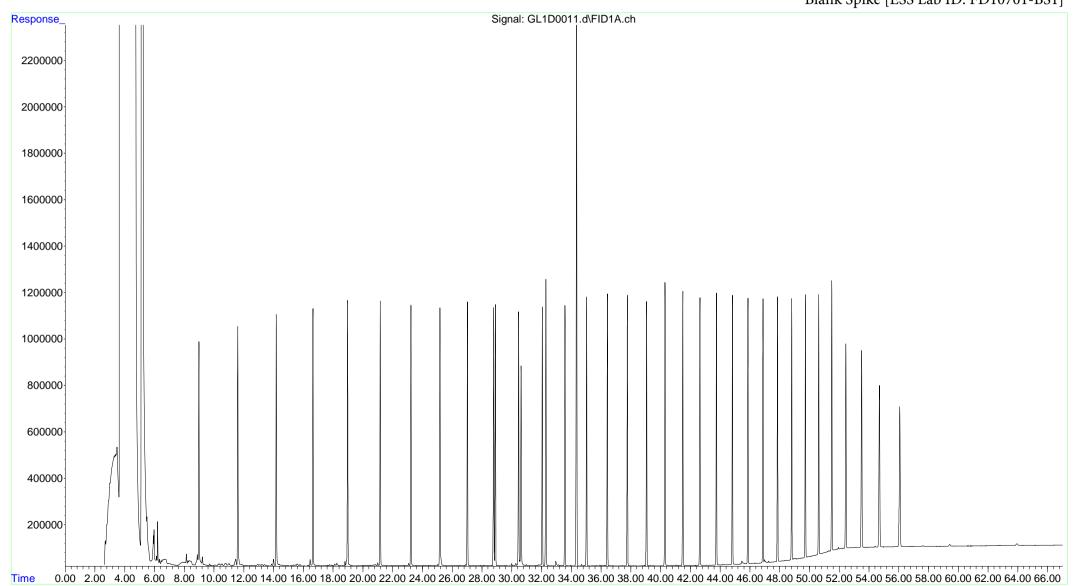
Acquired : 8 Apr 2021 2:15 am using AcqMethod GC12-DATA-ACQUISITION-4.M

Instrument: SVOA-GC12 Sample Name: FD10701-BLK1

Misc Info : Vial Number: 7

Method Blank [ESS Lab ID: FD10701-BLK1]

File :Q:\SVOA\GC12_GL\Data\GL0421\040721\GL1D0011.d


Operator : NXL

Acquired : 8 Apr 2021 3:35 am using AcqMethod GC12-DATA-ACQUISITION-4.M

Instrument : SVOA-GC12
Sample Name: FD10701-BS1

Misc Info : Vial Number: 8

Blank Spike [ESS Lab ID: FD10701-BS1]

Reference Chromatograms

Data Path : Q:\SVOA\GC12_GL\Data\GL0421\040721\

Data File : GL1D0006.d

Signal(s) : FID1A.ch Acq On : 7 Apr 2021 8:54 pm

Operator : NXL

Sample : F1D0001-CCV1

Misc

InstName : SVOA-GC12

ALS Vial : 4 Sample Multiplier: 1

Integration File: events.e

Quant Time: Apr 09 07:40:08 2021

Quant Method : Q:\SVOA\GC12_GL\Data\GL0421\040721\SHC12AA.M Quant Title : n-C8 - n-C40 normal alkanes w/ isoprenoids

QLast Update: Tue Jan 05 14:18:19 2021 Response via: Initial Calibration

Integrator: ChemStation

Volume Inj. : 1.0 Signal Phase : Rtx-5 Signal Info : 0.32

	Compound		R.T.	Response	Conc Units
Intern 1) I	al Standards 5a-Androstane		34.365	63410599	50.000 μg/mLm
System 2) S Spiked	Monitoring Compour o-Terphenyl Amount 25.000	nds Range	32.309 50 - 120	68926394 Recovery =	47.756 μg/mLm = 191.02%#
Target 3) 4) 5) 6) 7) 8) J1 10) J1 12) 13) J1 15) 16) 17) 18) 19) 20) 21) 22) 23) 24) 25) 26) 27) 28) 29) 30) 31) 32) 33) 34) 35) 36) 37) 38) 39) 40)	Compounds C-8 C-9 C-10 C-11 C-12 C-13 C-14 C-15 C-16 C-17 Pristane C-18 Phytane C-19 C-20 C-21 C-22 C-23 C-24 C-25 C-26 C-27 C-28 C-27 C-28 C-29 C-30 C-31 C-32 C-31 C-32 C-33 C-34 C-35 C-36 C-37 C-38 C-39 C-40		9.003 11.603 14.188 16.652 18.980 21.171 23.235 25.186 27.038 28.796 28.909 30.466 30.636 32.063 33.584 35.042 36.438 37.778 39.065 40.305 41.498 42.651 43.764 44.839 45.881 46.885 47.867 48.813 49.734 50.631 51.508 52.456 53.517 54.721 56.086	28255493 29697785 30161417 29862943 30476376 30360434 30722742 30934242 31001433 30623971 31755235 31248258 29001650 31541270 31378534 31333430 31873079 31448328 28697443 31168511 32674514 30921580 31443895 31150724 31364964 30309683 31790046 30257686 30059737 29967512 31675095 29967304 30293968 31101664 29051918	26.344 µg/mLm 24.231 µg/mLm 24.866 µg/mLm 25.246 µg/mLm 25.288 µg/mLm 25.183 µg/mLm 24.936 µg/mLm 24.746 µg/mLm 24.416 µg/mLm 24.416 µg/mLm 24.168 µg/mLm 24.168 µg/mLm 24.169 µg/mLm 24.579 µg/mLm 24.109 µg/mLm 23.637 µg/mLm 24.579 µg/mLm 23.637 µg/mLm 24.202 µg/mLm 23.811 µg/mLm 23.811 µg/mLm 23.812 µg/mLm 23.812 µg/mLm 23.917 µg/mLm 23.917 µg/mLm 23.917 µg/mLm 23.917 µg/mLm 23.917 µg/mLm 23.917 µg/mLm 23.239 µg/mLm 23.244 µg/mLm 23.282 µg/mLm 23.282 µg/mLm 23.2957 µg/mLm 23.303 µg/mLm 23.303 µg/mLm 23.303 µg/mLm 23.303 µg/mLm 23.957 µg/mLm 24.228 µg/mLm 24.228 µg/mLm

SemiQuant Compounds - Not Calibrated on this Instrument

(f)=RT Delta > 1/2 Window

(m)=manual int.

Quantitation Report (QT Reviewed)

Data Path : Q:\SVOA\GC12_GL\Data\GL0421\040721\

Data File : GL1D0006.d Signal(s) : FID1A.ch

Acq On : 7 Apr 2021 8:54 pm

Operator : NXL

Sample : F1D0001-CCV1

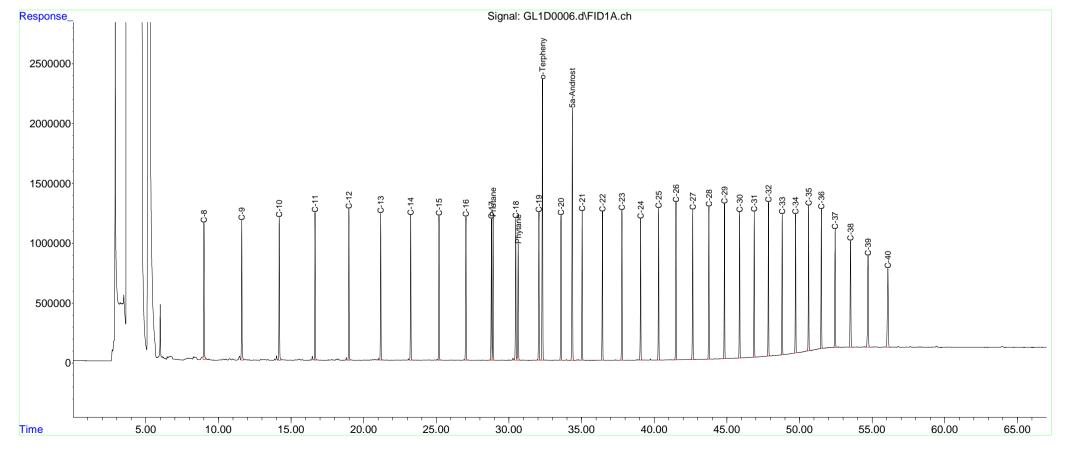
Misc :

InstName : SVOA-GC12

ALS Vial : 4 Sample Multiplier: 1

Integration File: events.e

Quant Time: Apr 09 07:40:08 2021

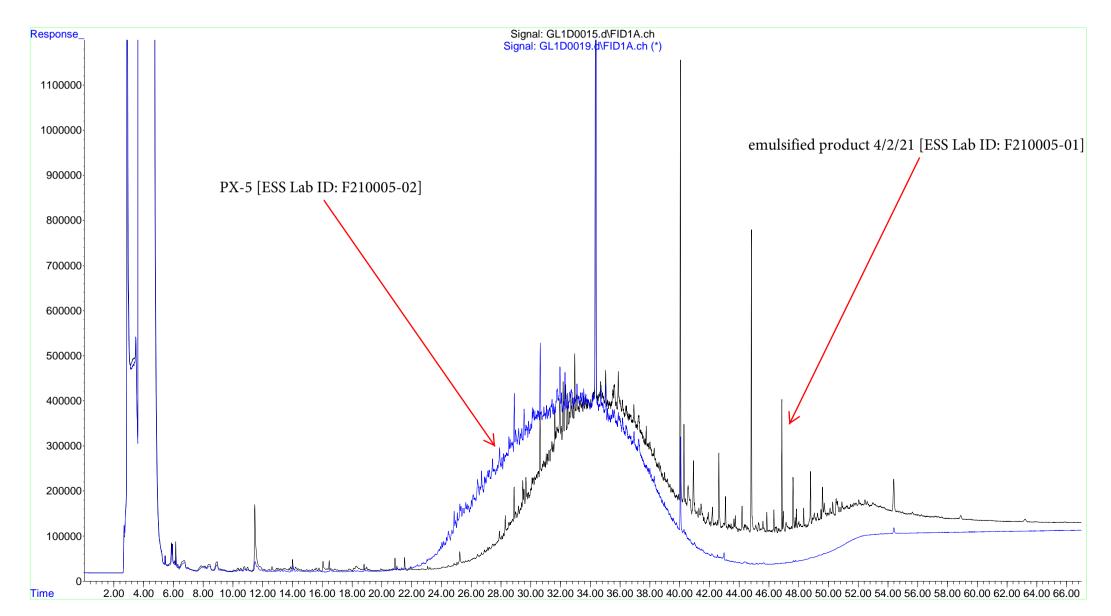

Quant Method : Q:\SVOA\GC12_GL\Data\GL0421\040721\SHC12AA.M Quant Title : n-C8 - n-C40 normal alkanes w/ isoprenoids

QLast Update : Tue Jan 05 14:18:19 2021

Response via : Initial Calibration

Integrator: ChemStation

Volume Inj. : 1.0 Signal Phase : Rtx-5 Signal Info : 0.32


File :Q:\SVOA\GC12_GL\Data\GL0421\040721\GL1D0015.d

Operator : NXL

Acquired : 8 Apr 2021 9:02 am using AcqMethod GC12-DATA-ACQUISITION-4.M

Instrument : SVOA-GC12 Sample Name: F210005-01

Misc Info : 5 Vial Number: 25

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Client Project ID: 131 Morse St. Foxborough MA ESS Laboratory Work Order: F210005

Notes and Definitions

U	Analyte included in the analysis, but not detected
J	Reported between MDL and MRL

D Diluted.

F/V

ND Analyte NOT DETECTED at or above the MRL (LOQ), LOD for DoD Reports, MDL for J-Flagged Analytes

dry Sample results reported on a dry weight basis

RPD Relative Percent Difference
MDL Method Detection Limit
MRL Method Reporting Limit
LOD Limit of Detection
LOQ Limit of Quantitation
DL Detection Limit
I/V Initial Volume

Final Volume

§ Subcontracted analysis; see attached report

1 Range result excludes concentrations of surrogates and/or internal standards eluting in that range.

2 Range result excludes concentrations of target analytes eluting in that range.
3 Range result excludes the concentration of the C9-C10 aromatic range.

Avg Results reported as a mathematical average.

NR No Recovery
[CALC] Calculated Analyte

SUB Subcontracted analysis; see attached report

RL Reporting Limit

EDL Estimated Detection Limit

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

• Service

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Client Project ID: 131 Morse St. Foxborough MA ESS Laboratory Work Order: F210005

ESS LABORATORY CERTIFICATIONS AND ACCREDITATIONS

ENVIRONMENTAL

Rhode Island Potable and Non Potable Water: LAI00179 http://www.health.ri.gov/find/labs/analytical/ESS.pdf

Connecticut Potable and Non Potable Water, Solid and Hazardous Waste: PH-0750 http://www.ct.gov/dph/lib/dph/environmental_health/environmental_laboratories/pdf/OutofStateCommercialLaboratories.pdf

Maine Potable and Non Potable Water, and Solid and Hazardous Waste: RI00002 http://www.maine.gov/dhhs/mecdc/environmental-health/dwp/partners/labCert.shtml

Massachusetts Potable and Non Potable Water: M-RI002 http://public.dep.state.ma.us/Labcert/Labcert.aspx

New Hampshire (NELAP accredited) Potable and Non Potable Water, Solid and Hazardous Waste: 2424 http://des.nh.gov/organization/divisions/water/dwgb/nhelap/index.htm

New York (NELAP accredited) Non Potable Water, Solid and Hazardous Waste: 11313 http://www.wadsworth.org/labcert/elap/comm.html

New Jersey (NELAP accredited) Non Potable Water, Solid and Hazardous Waste: RI006 http://datamine2.state.nj.us/DEP OPRA/OpraMain/pi main?mode=pi by site&sort order=PI NAMEA&Select+a+Site:=58715

United States Department of Agriculture Soil Permit: P330-12-00139

Pennsylvania: 68-01752

http://www.dep.pa.gov/Business/OtherPrograms/Labs/Pages/Laboratory-Accreditation-Program.aspx

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

• Service

								TD	412		, ,				
				CHAIN OF CUS	STODY		ESS I	TD Lab# L	19	FDU	MMF	Pa	ge /	of	/
		nces Avenue	Turn Time	$\square > 5$ $\square 25$ $\square 4$ $\square 3$				ELECTR					Report	s are PDI	O 3
The state of		on, RI 02921		Criteria:			É ∜ Li	mit Check	er	☐ State	Forms		EQuIS		į
LANGE !		401-461-7181	Regulatory State:	Is this project for any of the			≝ Ex			☐ Hare			Enviro I)ata	1
ARABASA		01-461-4486 aboratory.com	☐ CT RCP	MA MCP □ RGP	☐ Permit	□ 401 WQ	□ CI	P-Like Pa	ackage	☐ Othe	er (Specif	ì y) →			
ALCORING DET			Lerker	PROJECT INFORM	MATION				REQ	UESTE	D ANA	LYSI	is		
	INFORMA		Project Name:			Z Client	1/2								70
Client: Tight Address: 120	1 13M9		Project Location:	131 Morse St. Fox	Pi	acknowledges	word Mr							{	Total Number of Bottles
Woruski	MA	215/18	Project Number:	N-5067-684		that sampling is	100								Í
<i>N/01USICA</i> Phone:	Tries C	71000		Kern Lewis		compliant with	150								ber
FROME:	+ V/1 25	Drik abund	Bill to:			all EPA / State	ابرا								유
Email Distribution Lis MAHbruhmad	Timbers!	com	PO#:			regulatory programs	1,4	}							l marian
Maltommou	11 HWWW	corp	Quote#:			programs	Forens							1 1	es
ESS Lab Collection	n Collection	Comple Tops	Sample Matrix	S	ample ID		10								
Date	Time	Sample Type				1	M	1 1 -							
1 4/2/2	10:00	6	0	emulsified pord	ecet 4/	2/2/	 			 				† † †	
										 			╆┼╌	+	
												_	 	 	
								1	\						
			<u> </u>				1 1							1.1.1	
							-	+		 					
	•						+	- - -					+	+ +-	
				i			 			╂—}	 		┼-├-	╁┈┼┈╎	
							<u> </u>						 - - - - - - - - -	 	
<u> </u>	- 									1 1		1		<u> </u>	
						<u> </u>	1								1 1
			<u> </u>	<u> </u>	Other P-Poly S	S-Sterile V-Vial	18	- - -	+	╅┈┼╌		\sqcap			
Container Typ			nber Glass B-BOD Bo		oz 9-4 oz 10-		1//	- - -	 	1-1-	1 1		+ +		
Container Volum	ie: 1-100	mL 2-2.5 gal 3-	250 mL 4-300 mL 5				$\frac{ n }{i}$	- - -	1 1	+					
Preservation Cod	le: 1-Non P	reserved 2-HCl 3-H2	SO4 4-HNO3 5-NaOH	6-Methanol 7-Na2S2O3 8-ZnAce, N	Chair	needs to be fi	lled c	ut neat	lv and	d com	letely	for o	a time	delive	ry.
Sampled b	y:									100					
Laboratory U	se Only	Comments:	* Please specify "	Other" preservative and con	tainers types in	tnis space	All	samples	submi	tted are	subject	to nd	Dissol	lved Filtr	ation
Cooler Temperature (%	0. 28] Attn- No	rm Lauranni	cut w/ soils asso	ociated w	WO F	ES	S Labora	tory's p condi		terins a	nu		T . 1. T	7:14 om
Cooler Temperature (*	C):	Please C	amport pro	104 A.J. 2011 N. 201	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	2100173	<u> </u>		COHUL	HOHS.			· 🗆	Lab F	
Relinquished by	(Signatura)	Dates	Time	Received by (Signature)		ished by (Signature)	Da	te		Time		Receive	d by (Sig	
Kelmquished by	Constitution	1/1			1	Calles		4/2/	M	111	15		/	4 _	2/21
111		4/2/21	1144	Refredenter	JU!	Soferta		1///	2/		15		1200 K		13.02
Relinquished by	(Signature)	Date	/f'ime	Received by (Signature)	Relinqu	ished by (Signature	•)	Da	te		Time		Receive	d by (Sig	mattere)
	(<u> </u>					1		1			

Page 25 of 26

Am Sun

לנו יה בני מונבוגיו על בל מעליב בול מוצאי ולנו על מוצאי באל במלוחלתים והל מה בבונו ולנולון הביים באת ביב ב.

18:12

4/2/21

ESS Laboratory Sample and Cooler Receipt Checklist

Client:	Tighe and Bond		ESS Project ID		
Shipped/Delivered \	Via: Courier		Date Received Project Due Date Days for Project	4/9/2021	
Air bill manifest pr Air No.:		No	6. Does COC match bo	ottles?	Yes
2. Were custody sea	als present?	No	7. Is COC complete and	d correct?	Yes
3. Is radiation count	<100 CPM?	Yes	8. Were samples receiv	ved intact?	Yes
4. Is a Cooler Preser Temp: 3.8	nt? lced with:ice	Yes	9. Were labs informed	l about <u>short holds & rushes</u> ?	Yes / No (NA)
5. Was COC signed	and dated by client?	Yes	10. Were any analyses	s received outside of hold time?	Yes (No)
11. Any Subcontracti ESS Sample II Analy:			12. Were VOAs receive a. Air bubbles in aqued b. Does methanol cove	ous VOAs?	Yes (No Yes / No Yes / No / NA
13. Are the samples a. If metals preserve b. Low Level VOA v		Yes / No Date: Date:	Time:	By:	
Sample Receiving N	lotes:				
	ed to contact Project Manag d to contact the client? ?	er? Yes Yes Date:	· · · · · · · · · · · · · · · · · · ·	By:	
Sample Contair Number ID	ner Proper Air Bubble Container Present	s Sufficient Co Volume	ontainer Type Pres		anide and 608.3
1 1	Yes N/A	Yes	8 oz. Jar	NP	
Are barcode labels of Are all necessary stick	rella Jurs	`	No No Time: <u>4\2\7\</u> Time: <u>4 2 2\</u> 1°	1838 1:31	

APPENDIX C

TABLE 1

Soil Analytical Results National Grid Pad-Mounted Transformer Release 131 Morse Street Foxborough, Massachusetts

	Post-Excavation Soil Samples				Soil Boring Samples								
Sample ID	Massage	MDED	PX-1	PX-2	PX-3	PX-4	PX-5	PX-6	B-1	B-2	B-2	B-3	B-3
Sample Depth (feet)	MassDEP Method 1	MassDEP Method 1	1	1	1	2.5	2.5	2.5	2.5-5	2.5-5	5-7	2.5-5	5-7
Sample Date		S-2/GW-3	02/24/21	02/24/21	02/24/21	02/24/21	02/24/21	02/24/21	12/29/21	12/29/21	12/29/21	12/29/21	12/29/21
Petroflag (ppm)	3 2/GW 2	3 2/GW 2 3 2/GW 3		305	88	825	1,150	944	17	47	97	161	637
EPH Carbon Ranges (mg/kg)													
C ₉ -C ₁₈ Aliphatics	3,000	3,000	417	41.5	< 16.2	5,670	7,170	3,990	< 18.1	< 18.4	< 21.3	85.1	128
C ₁₉ -C ₃₆ Aliphatics	5,000	5,000	512	66.8	20.3	7,490	8,980	5,260	< 18.1	< 18.4	< 21.3	99.9	145
C ₁₁ -C ₂₂ Aromatics	3,000	3,000	276	46.9	135	5,740	7,030	2,310	< 18.1	< 18.4	151	53.7	86.1

Notes:

ppm = parts per million
mg/kg = milligrams per kilogram (equivalent to ppm)
< XX - Not Detected Above Laboratory Method Detection Limit
Bold concentrations exceed one or more MassDEP Method 1 criteria

TABLE 2

Groundwater Analytical Results National Grid Pad-Mounted Transformer Release 131 Morse Street

Foxborough, Massachusetts

Sample ID			MW-1	MW-2	MW-3
Sample Date	MassDEP	MassDEP	1/6/2022	1/6/2022	1/6/2022
Top of PVC Elevation (ft.)	Method 1	Method 1	98.67	99.54	99.30
Depth to Water (feet)	GW-2 Standard	GW-3 Standard	2.18	3.73	3.60
Groundwater Elevation			96.49	95.81	95.70
EPH Carbon Ranges (μg/L)					
C ₉ -C ₁₈ Aliphatics	5,000	50,000	< 99	< 98	< 98
C ₁₁ -C ₂₂ Aromatics	50,000	5,000	< 99	< 98	< 98
C ₁₉ -C ₃₆ Aliphatics	NS	50,000	< 99	< 98	< 98

Notes:

 ${ imes}{ imes}$

 μ g/L = micrograms per liter

TABLE 3

Surface Water Analytical Results National Grid Pad-Mounted Transformer Release 131 Morse Street

Foxborough, Massachusetts

Sample ID	Recommended Surface Water	SW-1	SW-2	SW-3
Sample Date	Quality Guidelines	12/9/2020	12/9/2020	12/9/2020
EPH Carbon Ranges (μg/L)				
C9-C18 Aliphatics	1,800	< 100	NA	< 95
C19-C36 Aliphatics	2,100	< 100	NA	< 95
C11-C22 Aromatics, Adjusted	NS	< 100	NA	< 95.2
TPH Fingerprint	NS	NA	Resembles Transformer	NA
			Oil Range	

Notes:

EPH = extractable petroleum hydrocarbons

TPH = total petroleum hydrocarbons

 μ g/L = micrograms per liter

NS = no standard

NA = not analyzed

< XX - Not detected above laboratory Method Detection Limit Surface Water sample concentrations were compared to the Recommended Surface Water Quality Guidelines contained in Table 4-12 of the Implementation of the MassDEP VPH/EPH Approach Policy #WSC-02-411

APPENDIX D

Engineers | Environmental Specialists

Project: Pad-Mounted Transformer

Location: 131 Morse Street, Foxborough MA

Client: National Grid

Page 1 of 1 File No. N5067-084 Checked by:

Boring No. **B-1/MW-1**

Drilling Co.	Martin GeoEnvironmental		Casing	Sampler
Foreman:	Jeremy Martin	Туре Т	Macro	
T&B Rep.:	S. Marokhovsky	I.D./O.D.		
Date Start:	12/29/21 End: 12/29/2021	Length	5"	
Location	See Exploration Location Plan	Rig Make/Model	GeoProbe	6620DT
GS. Elev.	Datum:	Other		

Groundwater Readings										
Date	Time	Depth	Casing	Sta. Time						
12/29/21	1200	2.23'	-	~1.5 hours						
1/6/22	1050	2.18'	-	8 days						

GS. Ele	ev. Datum:			Otner			
Depth (ft.)	Sample No. Rec.(in)	Sample Depth (ft.)	Dexsil	Sample Description	General Stratigraphy	N o t e s	Well Construction
	S-1	0-1	-	0-1.5': Concrete and cobbles			Riser Bentonite 1' 1'
	S-2	1-2	-	1.5-2.5': Tan, fine to coarse SAND, little Gravel,			
	S-3	2-3		trace Silt, wet			
	S-4	3-4	17	2.5-5': Tan, fine to coarse SAND, some wood debris, little Gravel, trace Silt, wet			
_	S-5	4-5	1	5-10': Gray, fine to coarse SAND and GRAVEL,			
5	S-6/36"	5-10	0	trace Silt, wet	FILL	1	2" PVC Screen Filter Sand
10				End of Boring at 10 feet bgs			
1.5							
15							
20							
20							
25							
30							

Notes:

1. Pre-Cleared to 5' with vacuum excavation. Samples collected with hand auger.

Proportions Used

TRACE (TR.) LITTLE (LI.) 0 - <10% 10 - <20% 20 - <35% SOME (SO.) AND 35 - <50%

Engineers | Environmental Specialists

Drilling Co. Martin GeoEnvironmental

Date Start: 12/29/21 End: 12/29/2021

Location See Exploration Location Plan
GS. Elev. Datum:

Foreman: Jeremy Martin
T&B Rep.: S. Marokhovsky

Project: Pad-Mounted Transformer

Location: 131 Morse Street, Foxborough MA

Client: National Grid

Other

	Casing	Sampler
Type T	Macro	
I.D./O.D. -		
Length _	5"	
Rig Make/Model	GeoProbe	6620DT

Boring I	B-2/I	MW	-2		
Page	1	of	1		
File No.	N5	067-0	84		
Checked	d by:		ĺ		

Groundwater Readings									
Date	Time	Depth	Casing	Sta. Time					
12/29/21	1200	3.63'	-	~2.5 hours					
1/6/22	1145	3.73'	-	8 days					

							•
Depth (ft.)	Sample No. Rec.(in)	Sample Depth (ft.)	Dexsil	Sample Description	General Stratigraphy	N o t e s	Well Construction
	S-1	0-1	-	0-2.5': Imported processed gravel (backfill from previous soil excavation) and concrete pieces			Riser Bentonite 1' 1'
	S-2	1-2	-				
	S-3	2-3		2.5-5': Brown, fine to coarse SAND, some Gravel, trace Silt, damp, faint petroleum-like and organic			
	S-4	3-4	47	odors noted		2	
5	S-5	4-5		5-7': Black, fine to coarse SAND, some Gravel, trace Silt, trace brick, wet, petroleum-like odor	FILL		
		5-7	97	7-10': Tan, fine to coarse SAND, some Gravel, trace Silt, wet		1	2" PVC Filter Screen Sand
	S-6/40"	7-10	7				
10				End of boring at 10 feet bgs		1	<u></u>
15							
20							
20							
25							
30							
			l .				

1. Pre-Cleared to 5' with vacuum excavation. Samples collected with hand auger.

2. Soil appears to have a faint sheen.

Proportions Used TRACE (TR.) LITTLE (LI.) 0 - <10% 10 - <20% 20 - <35% SOME (SO.) AND 35 - <50%

Engineers | Environmental Specialists

Drilling Co. Martin GeoEnvironmental

See Exploration Location Plan

12/29/2021

Foreman: Jeremy Martin

T&B Rep.: S. Marokhovsky

Date Start: 12/29/21 End:

Location

Project: Pad-Mounted Transformer

Location: 131 Morse Street, Foxborough MA

Client: National Grid

Page	1	of	1			
File No.	N5	067-0	84			
Checked by:						

Boring No. **B-3/MW-3**

Casing Sampler Type Macro I.D./O.D. 5' Length Rig Make/Model GeoProbe 6620DT Other

		Groundwa	iter Readir	ngs
Date	Time	Depth	Casing	Sta. Time
12/29/21	1200	3.59'	-	~30 minutes
1/6/22	1310	3.60'	-	8 days
				·

GS. Ele		ation Location	T F I A I I	Other 6620D1			
Depth (ft.)	Sample No. Rec.(in)	Sample Depth (ft.)	Dexsil	Sample Description	General Stratigraphy	N o t e s	Well Construction
	S-1	0-1	-	0-2.5': Concrete and cobbles			Riser Bentonite 1' 1'
	S-2	1-2	-	2.5-5': Brown, fine to coarse SAND and GRAVEL,			
	S-3	2-3		trace Silt, wet			
	S-4	3-4	161	5-7': Black, fine to coarse SAND, some Gravel, trace Silt, wet, faint petroleum-like and organic			
_	S-5	4-5		odors	F		
5		5-7	637	7-10': Tan, fine to coarse SAND, some Gravel, trace Silt, wet	FILL	1	2" PVC Filter Sand
	S-6/40"	7-10	116				
10						1	
15							
20							
]			
]			
35]			
25				1			
				1			
]			
]			
30]			
						_	

Notes:

1. Pre-Cleared to 5' with vacuum excavation. Soil samples collected with hand auger.

Proportions Used

TRACE (TR.) LITTLE (LI.) 0 - <10% 10 - <20% 20 - <35% SOME (SO.) AND 35 - <50%

APPENDIX E

Appendix E - Photographic Log

Client: Massachusetts Electric Company d/b/a National Grid Job Number: N5067-084

131 Morse Street

Site: Foxborough, Massachusetts

Photograph No.: 1 Date: 1/26/2022 Direction Taken: North

Description: View of the downstream boom segments and organic foaming.

Photograph No.: 2 Date: 1/26/2022 Direction Taken: NA

Description: View of the petroleum staining on the upstream booms recovered from the sluiceway.

APPENDIX F

Please print or type. (Form designed for use on elite (12-pitch) typewriter.) UNIFORM HAZARDOUS MASTE MANIFEST MAC300012655 4. Manifest Tracking Number 2. Page 1 of | 3. Emergency Response Phone (800) 483-3718 **WASTE MANIFEST** Generator's Site Address (if different than mailing address) 5. Generator's Name and Mailine Address
MASSACHUSETTS ELECTRIC COMPANY SITE ADDRESS: 131 Morse st 40 SYLVAN ROAD Foxborough Ma 02035 WALTHAM. MA 02451 Generator's Phone (781) 907-3647 ATTN: SUSAN BROCHU 6. Transporter 1 Company Name CLEAN HARBORS ENVIRONMENTAL SERVICES, INC. MAD039322250 7. Transporter 2 Company Name U.S. EPA ID Number U.S. EPA ID Number 8. Designated Facility Name and Site Address
CLEAN HARBORS OF BRAINTREE, INC. 1 HILL AVENUE MAD053452637 BRAINTREE, MA 02184 Facility's Pho (781) 380-7100 9b. U.S. DOT Description (including Proper Shipping Name, Hazard Class, ID Number, 10. Containers 11. Total 12. Unit 13. Waste Codes НМ and Packing Group (if any)) Quantity Wt./Vol. Type MA01 NON-DOT REGULATED MATERIAL, (OILY SOLIDS) [] 14. Special Handling Instructions and Additional Information **WASTE PROFILE# R40179B** 15. GENERATOR'S/OFFEROR'S CERTIFICATION: I hereby declare that the contents of this consignment are fully and accurately described above by the proper shipping name, and are classified, packaged, marked and labeled/placarded, and are in all respects in proper condition for transport according to applicable international and national governmental regulations. If export shipment and I am the Primary Exporter, I certify that the contents of this consignment conform to the terms of the attached EPA Acknowledgment of Consent. Leartify that the waste minimization statement identified in 49(CFR 262.27(a) (if I am a large quantity generator) or (b) (if I am a small quantity generator) is true. Year 16. International Shipments Import to U.S. Port of entry/exit: Transporter signature (for exports only): Date leaving U.S. 17. Transporter Acknowledgment of Receipt of Materials Transporter 1 Printed/Typed Nam Signature 18. Discrepancy 18a. Discrepancy Indication Space Type Partial Rejection Quantity Full Rejection Manifest Reference Number: U.S. EPA ID Number 18b. Alternate Facility (or Generator) Facility's Phone: Year 18c. Signature of Alternate Facility (or Generator) Month Day 19. Hazardous Waste Report Management Method Codes (i.e., codes for hazardous waste treatment, disposal, and recycling systems) 20. Designated Facility Owner or Operator: Certification of receipt of hazardous materials covered by the manifest except as noted in Item 18a Month Printed/Typed Name Dav Year lelm 10 05

EPA Form 8700-22 (Rev. 3-05) Previous editions are obsolete.

DESIGNATED FACILITY TO DESTINATION STATE (IF REQUIRED)

Ple	ase pr	rint or type.									n Approved.	OMB No. 2	2050-0039
\prod	W	VASTE MANIFEST	1. Generator ID N	00017	655	2. Page 1 of 3. Em	483~	3718	01	518	3812	3 F	ΞLΕ
	5. G	enerator's Name and Maili	ing Address	Electri	c Com	Gener	itor's Site Address	(if different th	an mailing addre	57.	e et		
		40 Syl walthan erator's Phone (781	Vana.	6540 67451	•				0, M			ځ	
	Gene	erator's Phone 7 5 1 ansporter 1 Company Nar	<u>ゞ゙゙゙゙゙゙゙゙゙゙゙゙゙゙゚゚゚ゔゔ゙-</u> iie	3647					U.S. EPA ID	Number			
	<u>C</u>	lean Ho	erbors	Enulra	nmenta	1 Scri	es I	nc,			3 2 2 .	25C	>
	7. To	ansporter 2 Company Nar	ne						U.S. EPA ID I	Number			
	8. De	esignated Facility Name at	nd Site Address ひょとの・S	of 3	Praintre	e Inc.			U.S. EPA ID I	Number			
		1 11 11 1							MAD	ورح	452	63	7
	į.	By Chone: (78)					40.0.4		1	l .			
	9a. HM	and Packing Group (if	any))	r Shipping Name, Haza			10. Conta	ners Type	11. Total Quantity	12. Unit Wt./Vol.	13. \	Waste Code:	3
8		1. Non	DOTR	esulate Diclectr	1 Mate	راحرب	xxi	TT	129	G	HAOI		
GENERATOR					C F/Wie	بر 	~~,	<u> </u>	12-1				
NS S		2.											
$\ $	_	3:											
		. J.											
$\ $	L	4.					<u> </u>						
	14. 9	Special Handling Instruction	ns and Additional In	formation			<u> </u>				1	ì	
	1.	55371	1.B										
$\ $													
Ш	15.	GENERATOR'S/OFFERO marked and labeled/place		•			•						
Ш		Exporter, I certify that the I certify that the waste mi	nimization statemen	t identified in 40 CFR 2	82.27(a) (if I am a larg	ge qualqtity generator)		all quantity ge	nerator) is true.				
<u>U</u>	E	MK JM	yped Name	MEC		Signature	te				Mon	th Day <mark>> ロ</mark> 4	Year ノスク
Ę	16. lt Tran	nternational Shipments esporter signature (for exp	import t	o U.S.		Export from U.S.	Port of earl			<u></u>			
_		ransporter Acknowledgme	nt of Receipt of Mate	rials		Cianatan					Man	# Davi	Year
POR	4	sporter 1 Printed/Typed Na	か、ナム			Signature	12		7		Mon ノマ		νωτ スの
TRANSPORTER	Trans	sporter 2 Printed/Typed Na	ame			Signature				•	Mon	eth Day	Year
F		Discrepancy	······································			I							
	18a.	Discrepancy Indication Sp	Daice Qua	ıntity	Туре		Residue		Partial Re	jection	[Full Reje	ection
		A0				:	Manifest Reference	e Number:	U.O. FOA 10.1	M			-
DESIGNATED FACILITY	180.	Alternate Facility (or Gene	erator)						U.S. EPA ID I	AUTHOR			
DEA	Facil	lity's Phone: Signature of Alternate Fac	ility (or Generator)				-				I Mo	nth Day	Year
M	100.	orgination of receivable fac	any (or octobator)										
ESIG	19. I	lazardous Waste Report N	Management Method	Codes (i.e., codes for	hazardous waste trea	etment, disposal, and r	ecycling systems)		14.				
١		H141						·		·		<u></u>	
		Designated Facility Owner ed/Typed Name		ation of receipt of haza	rdous materials cover	ed by the manifest exc Signature	ept as noted in Ite	m 18a			Mo	_ ′	Year
Ī	H	luyen 10	ong				mps	W	<u>~7</u>		1		120
c۲	A LOU	n 8700-22 (Rev. 12-17) Previous editioi	ns are odsolete.			v DES	SIGNATE	D FACILITY	TO FPA	L'S O MAN	JIFEST S	SYSTEM

DESIGNATED FACILITY TO EPA'S e-MANIFEST SYSTEM 2005/22795

Please print or Ripe erator acknowledges that no material change has occurred either in the onaracteristics of in the process generating the Aparthela. OMB No. 2050-0039 4. Manifest Tracking Number 1. Generator ID Number 2. Page 1 of 3. Emergency Response Phone **UNIFORM HAZARDOUS** 51881 **WASTE MANIFEST** (800) 483-3718 MAC300012655 5. Generator's Name and Mailing Address Generator's Site Address (if different than mailing address) Massachusetts Electric Company 40 Sylvan Road 131 Morse Street Waitham, MA 02451 Foxboro,MA 02035 Generator's Phone: (724) 907-3647

6. Transporter 1 Company Name ATTN:Susan Brochu U.S. EPA ID Number Clean Harbors Environmental Services, Inc. M A D 0 3 9 3 2 2 2 5 0 U.S. EPA ID Number 7. Transporter 2 Company Name 8. Designated Facility Name and Site Address U.S. EPA ID Number Clean Harbors El Dorado LLC ARD069748192 309 American Circle El Dorado, AR 71730 aclity's Phone: (870) 962 7472 9b. U.S. DOT Description (including Proper Shipping Name, Hazard Class, ID Number, 10. Containers 11 Total 12 Unit 9a 13. Waste Codes and Packing Group (if any)) нм Quantity Wt./Vol Туре NON DOT REGULATED MATERIAL, (OILY DEBRIS) GENERATOR MA01 002 2. authority on Initial transporter to and or substitute anothers of this consignment are fully and accounted above by the proper shipping name, and are of marked and labeled/placaded and are in all respects to preper condition for transport according to applicable intermediately described above by the proper shipping name, and are of marked and labeled/placaded and are in all respects to preper condition for transport according to applicable intermediately and national adversariant and are only in the proper of the proper shipping name, and are of marked and labeled/placaded and are in all respects to this consignment conform to the terms of the distribution of the proper shipping name, and are of marked and labeled placed and are in all respects to the proper shipping name, and are of the proper shipping name, and Contract retained by generator confers agenc of transportation efficiency assumence or by the proper shipping name, and are classified, packaged, Generator's/Offeror's Printed/Typed Name Year Port entry/exit: Transporter signature (for exports only): Date leaving U.S. 17. Transporter Acknowledgment of Receipt of Materials Transporter 1 Printed/Typed Name Signature Month Year Transporter 2 Printed/Typed Name 18. Discrepancy 18a. Discrepancy Indication Space Туре Partial Rejection Quantity Residue _ Full Rejection Manifest Reference Number: 18b. Alternate Facility (or Generator) U.S. EPA ID Number Facility's Phone: 18c. Signature of Alternate Facility (or Generator) Month Day Year 19. Hazardous Waste Report Management Method Codes (i.e., codes for hazardous waste treatment, disposal, and recycling systems) 1 H040 20. Designated Facility Owner or Operator: Certification of receipt of hazardous materials covered by the manifest except as noted in Item 18a Printed/Typed Name Month Day Year

EPA Form 8700-22 (Rev. 12-17) Previous editions are obsolete.

X X0619

Generator acknowledges that no material change has occurred either in the characteristics or in the process generating the material. OMB No. 2050-003: Please print or type. 4. Manifest Tracking Number 1. Generator ID Number 2. Page 1 of 3. Emergency Response Phone UNIFORM HAZARDOUS 015189992 MAC300012655 **WASTE MANIFEST** 1 (800) 483-3718 Generator's Name and Mailing Address
Massachusetts Electric Company Generator's Site Address (if different than mailing address) 40 Sylvan Road 131 Morse Street Waltham, MA 02451 Foxboro,MA 02035 Generator's Phone: (781) 907-3647 ATTN:Susan Brochu 6. Transporter 1 Company Nam U.S. EPA ID Number Clean Harbors Environmental Services, Inc. <u>MAD039322250</u> 7. Transporter 2 Company Name 8. Designated Facility Name and Site Address U.S. EPA ID Number Clean Harbors Grassy Mountain LLC 3 Miles East 7 Miles North of Knolls Grantsville, UT 84029 citys Phone: (4.25) 994 9900 UTD991301748 9b. U.S. DOT Description (including Proper Shipping Name, Hazard Class, ID Number, 10. Containers 12. Unit 13. Waste Codes and Packing Group (if any)) Wt./Vol. Quantity HM NON DOT REGULATED MATERIAL, (OILY DEBRIS) GENERATOR LOAM 14. Special Handling Instructions and Additional Information (2705)
1.R40179 3\$x55 DM @ 240p Contract retained by generator confers agence of transportation efficiency communicates or extension authority on initial transporter to add or substitute additional transporters on generator's behalf for purposes of transportation efficiency convenience or 15. GENERATOR'S/OFFEROR'S CERTIFICATION: I hereby declare that the contents of this consignment are fully and accurately described above by the proper shipping name, and are classified, packaged. marked and labeled/placarded, and are in all respects in proper condition for transport according to applicable international and national governmental regulations. If export shipment and I am the Primary Exporter, I certify that the contents of this consignment conform to the terms of the attached EPA Acknowledgment of Consent. ent identified in 40 CEB 262.27(a) (if I am a large quantity generator) or (b) (if lag a small I certify that the waste minimization state Month Day Generator's/Offeror's Printed/Typed Name Export from U.S. Port of entry/exit: Import to U.S. Date leaving U.S. Transporter signature (for exports only): 17. Transporter Acknowledgment of Receipt of Materials Transporter Printed Typed Name 18. Discrepancy 18a. Discrepancy Indication Space Type ___ Partial Rejection Full Rejection Residue Quantity Manifest Reference Number U.S. EPA ID Number 18b. Alternate Facility (or Generator) Facility's Phone: Day 18c. Signature of Atternate Facility (or Generator) 19. Hazardous Waste Report Management Method Codes (i.e., codes for hazardous waste treatment, disposal, and recycling systems) H132 20. Designated Facility Owner or Operator: Certification of receipt of hazardous materials covered by the manifest except as noted in Item 18a Day Signature Printed/Typed Name Clean Harbors has the appropriate permits for and will accept the waste the generator is shipping.

TR-80619

Generator acknowledges that no material change has occurred either in the characteristics or in the process generating the material.

Form Approved, OMB No. 2050-0039 Please print or type. 1. Generator ID Number 4. Manifest Tracking Number 2. Page 1 of 3. Emergency Response Phone UNIFORM HAZARDOUS 5188520 MAC300012655 **WASTE MANIFEST** 1 (800) 483-3718 Generator's Name and Mailing Address
Massachusetts Electric Company Generator's Site Address (if different than mailing address) 40 Sylvan Road 131 Morse Street Waltham, MA 02451 Foxbore.MA 02035 Generator's Phone: (781) 907-3647 ATTN:Susan Brochu 6. Transporter 1 Company Name U.S. EPA ID Number Clean Harbors Environmental Services, Inc. MAD039322250 7. Transporter 2 Company Name U.S. EPA ID Number 8. Designated Facility Name and Site Address U.S. EPA ID Number Clean Harbors El Dorado LLC ARD069748192 309 American Circle El Dorado, AR 71730 Facility's Phone: (870) 863-7173 9b. U.S. DOT Description (including Proper Shipping Name, Hazard Class, ID Number, 10. Containers 11. Total 12. Unit 13. Waste Codes and Packing Group (if any)) НМ Quantity Wit Avoi No. Туре NON DOT REGULATED MATERIAL, (OILY DEBRIS) MA01 SENERATOR DM 14, Special Handling Instructions and Additional Information DM 2×55 Contract retained by generator confers agenc authority on initial transporter to add or substitute additional transporters on generator's behalf for purposes of transportation efficiency comenience or safe 15. GENERATOR'S/OFFEROR'S CERTIFICATION: I hereby declare that the contents of this consignment are fully and accurately described above by the proper shipping name, and are classified, packaged, marked and labeled/placarded, and are in all respects in proper condition for transport according to applicable international and national governmental regulations. If export shipment and I am the Primary Exporter, I certify that the contents of this consignment conform to the terms of the attached EPA Acknowledgment of Consent. I certify that the waste minimization statement identified in 40 CFR 262.27(a) (if I am a large quantity generator) or (b) (if I am a Generator's/Offeror's Printed/Typed Name Month Year Day 20 Import to U.S. Export from U.S. Port of entry/exit: Transporter signature (for exports only): Date leaving U.S. 17. Transporter Acknowledgment of Receipt of Materials TRANSPORTER Transporter 1 Printed/Typed Name Month Signature 20 201 Transporter 2 Printed/Typed Name Signature Month. 18. Discrepancy 18a. Discrepancy Indication Space ∏_{Туре} Residue □ Partial Rejection Full Rejection Quantity Manifest Reference Number: 18b. Alternate Facility (or Generator) U.S. EPA ID Number Facility's Phone: 18c. Signature of Alternate Facility (or Generator) Day **DESIGN** 19. Hazardous Waste Report Management Method Codes (i.e., codes for hazardous waste treatment, disposal, and recycling systems) 4. H040 20. Designated Facility Owner or Operator: Certification of receipt of hazardous materials covered by the manifest except as noted in Item 18a Month Day Printed/Typed Name

EPA Form 8700-22 (Rev. 12-17) Previous editions are obsolete.

Clean Harbors has the appropriate permits for and will accept the waste the generator is shipping.

DESIGNATED FACILITY TO EPA's e-MANIFEST SYSTEM SERVICE SERV

TR# 80619

2005 122795 Form Approved. OMB No. 2050-0039 Please print or type. (Form designed for use on elite (12-pitch) typewriter.) UNIFORM HAZARDOUS 1. Generator ID Number 3. Emergency Response Phone MAC300012655 WASTE MANIFEST (800) 483-3718 5. Generator's Name and Mailing Address
MASSACHUSETTS ELECTRIC COMPANY
40 SYLVAN ROAD
WALTHAM, MA 02451 SITE ADDRESS: 131 MORES ST FEXSOROUPH-MA 0203(Generator's Phone (781) 907-3647 6. Transporter 1 Company Name U.S. EPA ID Number CLEAN HARBORS ENVIRONMENTAL SERVICES, INC. MAD039322250 7. Transporter 2 Company Name U.S. EPA ID Number U.S. EPA ID Number CLEAN HARBORS GRASSY MOUNTAIN LLC 3 MILES EAST 7 MILES NORTH OF KNOLLS GRANTSVILLE, UT 84029 Facility's Pho(435) 884-8900 UTD991301748 9b. U.S. DOT Description (including Proper Shipping Name, Hazard Class, ID Number, 10. Containers 11. Total 12. Unit and Packing Group (if any)) 13. Waste Codes HM Туре Quantity Wt./Vol. **MA01** NON DOT REGULATED MATERIAL, (OILY SOLIDS) 300 003 14. Special Handling Instructions and Additional Information 3×55717 **WASTE PROFILE # R40179** GENERATOR'S/OFFEROR'S CERTIFICATION: I hereby declare that the contents of this consignment are fully and accurately described above by the proper shipping name, and are classified, packaged, marked and labeled/placarded, and are in all respects in proper condition for transport according to applicable international and national governmental regulations. If export shipment and Jam the Primary Exporter the transport according to applicable international and national governmental regulations. If export shipment and Jam the Primary Exporter the transport according to applicable international and national governmental regulations. If export shipment and Jam the Primary Exporter the transport according to applicable international and national governmental regulations. If export shipment and Jam the Primary Exporter the transport according to applicable international and national governmental regulations. If export shipment and Jam the Primary Exporter than the waste minimization statement identified in 40 CFR 262.27(a) (if I am a large quantity generator) of (b) (if I am a small quantity generator) is true. Generator's/Offeror's Printed/Typed Name 0 Export from U.S. Port of Transporter signature (for exports only): aving U.S. 17. Transporter Acknowledgment of Receipt of Materials Signature Transporter 2 Printed/Typed Nar 18. Discrepancy 18a."Discrepancy Indication Space Type Quantity Residue Partial Rejection _ Full Rejection Manifest Reference Number: 18b. Alternate Facility (or Generator) U.S. EPA ID Number DESIGNATED 18c. Signature of Alternate Facility (or Generator) 199 Hazardous Waste Report Management Method Codes (i.e., codes for hazardous waste treatment, disposal, and recycling systems) 4. 20. Designated Facility Owner or Operator: Certification of receipt of hazardous materials covered by the manifest except as noted in Item 18a Printed/Typed Name Month Day

(6	①	Combustive solve	souledose that m	A serviceiro A	ange has obcurre	al alliner in .	**** =*					435		
Ple	ase pr	int or type.	_		ange nas occure						Form	Approved.		2050-003
l١		FORM HAZARDOUS ASTE MANIFEST	1. Generator ID Num		r R	2. Page 1 of	١.	ergency Response 00) 483-3		4. Manifest		951	7 F	FLE
Ш	5. G	nerator's Name and Malli	ng Address	WW.	 	-				nan mailing addres				
Ш		O Sylvan Road					13	1 Morse St	va ož					
П		Valtharn, MA 02 rator's Phone: (781)		ATTM-Co.	san Brochu			rboro,MA (
П	6. Tra	ansporter 1 Company Nan	ne							U.S. EPA ID N	lumber			
П		iean Harbors Examples 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1		Services, i	uc.							3222	850	
Ш	7. im		larbors	Fine	Sves 1	ne				U.S. EPA ID N		3222	ፍ ስ	
!	8. De	signated Facility Name ar			<u> </u>			<u></u>		U.S, EPA ID N		<u> </u>	 _	
	3	lean Harbers Gi Miles East 7 M rantsville, UT 9- iys Phone:	iles North of i	(noffs						UTD 	991	3017	48	
	9a. HM	9b. U.S. DOT Descript and Packing Group (if	ion (including Proper S		nzard Class, 1D Number,			10. Contain	ners Type	11. Total Quantity	12. Unit Wt./Val.	13. V	Vaste Code	16
۱ ۲		1 NON DOT RE	GULATED MA	TERIAL, (C	ILY DEBRIS)				-	2	n	MA01		
GENERATOR					·			002	M	<u> </u>	٢			
SEZ		2.								:				
I														
H		3.												
							•							
П	┢	4.						<u> </u>						
														
	14. S	necial Handing Instruction	ns and Additional Infon	mation					<u> </u>	<u> </u>	L	L		<u> </u>
	1.	E40179.			2X5									
					•	-				Contract o	etained b	y generati	of co nfe r	5 200 0
		ority on initize trans Generator's/offero								of transport	ation es	ciency.com	Menieno	0.0f \$2
		marked and labeled/placa Exporter, I certify that the	arded and are in all res	pects in proper co	ondition for transport acc	cording to appli	cąbie inte	ematjonal and nati	onal governr	nental regulations.	If export sh	ipment and ! a	un the Prim	ary
		I certify that the waste my	mization statement id	entified in 40 CFR	262.27(a) (if I am a lar	ge quantity gen	eratoù e	(Tb) (All and a sma	d quantity of	nerator) is true.				
il	Gene	ratore/Offeror's Printed (1)	yped Name	7.	ken /	Sig L	nature	\triangleleft				Mom I ∫≾	3131	Year
*	16. In	2 De Soi F & Itemational Shipments		-	sew	1	H	Port of en	To a family				2121	
Ē	Trans	sporter signature (for expo	imbort to U orts only):	1.5.		Export from (<u>"U</u>	Date leavi					•	
ER		ansporter Acknowledgmer		ls			\Rightarrow		2			Moni	th Davi	- Van
Ş		porter 1 Printed/Types No	nachea)	(پەر ئا				/		مراز		(1)
TRANSPO	Trans	porter 2 Miles/Types Na				Si	numbure	L A :		<u> </u>		Mon	th Day	Yea:
翌		Tho	mare C	<u> Ausk</u>	·			-3L	(<u>YLA</u>			1 25	21
1	<u> </u>	iscrefiancy Discrepancy Indication Sp	ngca 🗆				- -						Full Rej	
$\ \ $	102.1	Discrepancy indication op	Quanti	ty	Туре		ι	Residue		Partial Rej	ection	L	ruii Keji	BCHON
	L				<u>-</u> .		N	lanifest Reference	Number:	Ú.S. EPA ID N	kumber			
탈	18b. /	Alternate Facility (or Gene	erator)							U.S. EPAIU P	-UIIII			
FAC	Facili	ty's Phone:					_			<u> </u>				
9	18c.	Signature of Alternate Fac	ility (or Generator)									Mo	nth Day	y Y⊍an L
NS.	<u> </u>	lazardous Waste Report N	Innonwari Hattari C	ndee film London	for hazardous ussets too	alment discoss	al and re	cyclino systeme)					—	
DESIGNATED FACILITY	19. H	H132		2.	O HOLDIOUS WORK HER	3.	es dunt in			4.	_			
[,												1/3		
$\ $		Designated Facility Owner	or Operator: Certificati	on of receipt of ha	zardous materials cove	red by the man	ifest exc gnature	ept as noted in ite	n 18a	<u> (Dl</u>	1001	//ン Moi	nth Day	y Y⊹amr
	Print	ed/Typed Name	441			١		St	tu 1	UI			214	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
냚	A For	n 8700-22 (Key. 17-1 7). Previous editions	are obsolete.	ud will accept the	waste the		tor le etablis	GNATE	D'FACILITY	JO EPA	Se MAN	UFFST	SYS: ÉI

Plea	ise (print or type. (Form designed for use on elite (12-pitch) typewriter.)							n Approved.	OMB No. 2	2050-0039
Ť	<u>L</u>	WASTE MANIFEST MAC300012655	2 Page 1 of	(80	gency Response D) 483-3	718		102	604	0 F	LE
	X 49×	Generator's Name and Mailing Address ASSACHUSETTS ELECTRIC COMPANY SYLVAN ROAD ALTHAM, MA 02451 nerator's Phons (781) 907-3647 Transporter 1 Company Name			or's Site Address E ADDRE	:SS: /	31 Mod FoxBan	TRSE Oi MA	. SINE	et 035	
	CI	TRANSPORT COMPANY NAME LEAN HARBORS ENVIRONMENTAL SERVICES,	INC.				U.S. EPA ID I		250		
Ш	7.1	Transporter 2 Company Name Tlean Harbors Env Sucs In					U.S. EPAID I		9322	><0	
$\ $	8	Designated Facility Name and Site Address LEAN HARBORS GRASSY MOUNTAIN LLC MILES EAST 7 MILES NORTH OF KNOLLS					U.S. EPA 10 1			<u> </u>	
	IG	MILES EAST 7 MILES NORTH OF KNOLLS RANTSVILLE, UT 84029 ************************************					6010	91301	748		
	9a. HM	9b. U.S. DOT Description (including Proper Shipping Name, Hazard Class, ID Number, and Packing Group (if any))			10. Contair No.	ers Type	11, Total Quantity	12, Unit Wt./Vol.	13.3	Waste Code	5
GENERATOR -		NON DOT REGULATED MATERIAL, (OILY	SOLI	DS)	002	DY	300	P	MA01		
	┝	2.									
9 									····· }		
$\ \ $	一	3.									
11					_						
		4.									
	14	Special Handling Instructions and Additional Information									
$\ $	'*	Special Hartoning insulceous and Additional information	(2x.	55)							
		WASTE PROFILE # R40179									
	15.	GENERATOR'S/OFFEROR'S CERTIFICATION: 1 hereby declare that the conferits of this marked and labeled/placarded, and are in all respects in proper condition for transport accomposed in the second of the second of the attached I certify that the waste minimization statement identified in 40 CFR 262.27(a) (if I am a large	rding to appl I EPA Acknox	icable inte Medgment	mational and nati of Consent.	onal governm	ental regulations	nipping nam i. If export si	e, and are des nipment and I	ssifled, pack am the Prim	aged, i
$\ $		nerators/Offeror's Printed/Typed Name SHILLUCL DICICCO		gnature		1	C 1		Mor	in Day	
<u> </u>		ONBU141F C FM ECC International Shipments ☐ Import to U.S. ☐	Export from	-4	Derror en		<u> </u>	-ce		1 133	121
	-	ensporter signature (for exports only): Transporter Acknowledgment of Receipt of Materials			Date leavi	. –					-
TRANSPORTER	Tra	nsporter 1 Printed/Typed Name		gnature * J	$\overline{\rho}_{\bullet}$	0			Mor	ith Day	Year
NSPC	Tre	SHALVEC DICICO	<u> </u>	gnature	am	ul	<u> </u>	<u>س</u>	Mor	nth Day	Year
2		Thomas Clark		\subseteq	AL.	<u> </u>	<u>Q</u>	<u>&</u>		2/2	. 21
1	-	a: Discrepancy Indication Space Quantity Type			Residue		Partial Re	inction: "	,t	Full Re	ection
Ш		7			lanifest Reference	Alumbar		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			
E	18	b. Alternate Facility (or Generator)		<u>m</u>	eritor i resiroj Ka	TARITIDES.	U.S. EPA ID	Number		_	
FACIL	Fa	citity's Phone.					1	• • • _{**}	. <u> </u>		i
DESIGNATED FACILITY	18	c. Signature of Alternate Facility (or Generator)							I M	onth Day	y Year
SIGN	19	. Hazardous-Waste Report Management Method Codes (i.e., codes for hazardous waste treat	ment, dispos	al, and rec							
H	1.	H132 2			- ·	¥\$3	4.		<u>ەس</u>		
	_	Designated Facility Owner or Operator: Certification of receipt of hazardous materials covere inted/Typifd Name		rifest exce	pt as noted in Iter	n 18a .	700	IODI	<u> </u>	nth Qay	Year
$ \downarrow$]"	ASSITAN IVILLAYUUNS		W	sh'ile	M ho	IHT	A		314	121

EPA Form 8700-22 (Rev. 3-05) Previous editions are obsolete.

DESIGNATED FACILITY TO DESTINATION STATE (IF REQUIRED)

Ì	UNII	FORM HAZARDOUS WASTE MANIFEST (Continuation Sheet) 21. Generator ID Number MAC 3 5 5 12 6 5 5	5	22 Page	23. Mani	fest Tracking Nur	nber	10	II L C	*
	24. 0	MASS, ELECTRIC		<u>-</u> -	•	-	· 	-		
	2 5.	Transporter Company Name				U.S. EPĀ ID I	lumber	_	<u> </u>	
	2 6. 1	ransporter Company Name				U.S. EPA ID I	Number			
	27a. HM	27b. U.S. DOT Description (including Proper Shipping Name, Hazard Class, ID Number, and Packing Group (if any))		28. Contai	ners Type	29. Total Quantity	30. Unit Wt./Vol.	31. \	Vaste Codes	
						<u> </u>				
90 -						<u> </u>				 -
GENERATOR										
3	ĺ									
	_		$\overline{}$					_		
										
		^			/					
		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\								
╢	32 . S	pecial Handling Instructions and Additional Information		į				<u> </u>	- [
ļ									-• _	j
E E	33. Tr Printe	ansporter Acknowledgment of Receipt of Materials d/Typed Name Signature Signatu	gnature					Mor	th Day	Year
		ansporter Acknowledgment of Receipt of Materials								<u> </u>
			gnature					Mor	rth Day	Year
DESIGNATED FACILITY	35. Di	screpancy				- · · · ·			-	
GNATE	36. H	szardous Waste Report Management Method Codes (i.e., codes for hazardous waste treatment, disposa	a, and red	cycling systems)			1		<u>. </u>	

Generator acknowledges that no material change has occurred either in the characteristics of in the process generating the material.

Form Approved, OMB No. 2050-0039 r type.

2. Page 1 of 3. Emergency Response Phone

4. Manifest Tracking Number Please print or type UNIFORM HAZARDOUS 01551 (800) 483-3718 MAC300012655 1. WASTE MANIFEST Generator's Site Address (if different than mailing address) Generators Name and Mailing Address Company 40 Sylvan Road 131 Morse Street Waltham, MA 02451 Foxboro,MA 02035 Generator's Phone: (781) 907-3647 6. Transporter 1 Company Name ATTN: Susan Brochu U.S. EPA ID Number MAD039322250 Clean Harbors Environmental Services, Inc. U.S. EPA ID Numbe 7. Transporter 2 Company Name U.S. EPA ID Number 8. Designated Facility Name and Site Address Clean Harbors of Braintree Inc MAD053452637 1 Hill Avenue Braintree, MA 02184 (781) 380-7100 10. Containers 9b. U.S. DOT Description (including Proper Shipping Name, Hazard Class, ID Number, 11. Total 13. Waste Codes Quantity Wt./Vol. and Packing Group (if any)) Туре **MA01** NON DOT REGULATED MATERIAL, (OILY DEBRIS) 7 GENERATOR DM <u>0</u>03 150 14 Special Handling Instructions and Additional Information Contract retained by generator confers agency authority on initial transporter to add or substitute additional transporters on generator's penalf for purposes of transportation efficiency, convenience, or safety 15. GENERATOR'S/OFFEROR'S CERTIFICATION: I hereby declare that the contents of this cathograment are fully and accurately described above by the proper shipping name, and are classified, packaged, marked and labeled/placarded, and are in all respects in proper condition for transport according to applicable international and national governmental regulations. If export shipment and I am the Primary Exporter, I certify that the contents of this consignment conform to the terms of the attached EPA Acknowledgment of Consent.

I certify that the waste minimization statement identified in 40 CFR 262.27(a) (if I am a large quantity generator) or (b) (if I am a small quantity generator) is true Month DAVID ACCHROI Generator's/Offeror's Printed/Typed Name 121 111 BEHALFOF MASACHUSETTS ELEGTRIC CONPAN Export from U.S. Port of entry/exit: Import to U.S. Ē Date leaving U.S. Transporter signature (for exports only): 17. Transporter Acknowledgment of Receipt of Materials ter 1 Printed/Typed Name ユ П 21 Day \$igna 18. Discrepancy Full Rejection Partial Rejection Residue Type 18a. Discrepancy Indication Space Quantity Manifest Reference Number: U.S. EPA ID Number 18b. Alternate Facility (or Generator) Ĕ Facility's Phone: 18c. Signature of Alternate Facility (or Generator) 區 19. Hazardous Waste Report Management Method Codes (i.e., codes for hazardous waste treatment, disposal, and recycling systems) 20. Designated Facility Owner or Operator: Certification of receipt of hazardous materials covered by the manifest except as noted in Item 18a Signature 102/12/21 dina VÌ EPA Form 8700-22 (Rev. 12-17). Previous editions are obsolete and will accept the waste the generator is shipping NATED FACILITY TO EPA's e-MANIFEST SYSTEM

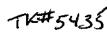
80825

Ple		, Generator acknow आ(of type:			e nas occumed	eaner in the	e characi	eredice of I	n the pro	cess generati	ing the	n Apploved.	OMB No.	2050-0039
	UNI	FORM HAZARDOUS (ASTE MANIFEST N	1. Generator ID Nu	mber 0 1 2 6 5 5		2. Page 1 of	I. "	ency Response		4. Manifest		lumber 1316	2 F	LF
$\ \ $	5. Ge	enerator's Name and Mailir	ng Address							an mailing addres				
Н		ssachusetts Ele Subras Baad	conc Compa	ny										
11		Sylvan Road Mham, MA 0246	54					ORSE ST						
Ш	Gene	erator's Phoesy (3-1). Ox ansporter 1 Company Nam	7-3647	ATTM:Susan	Brooku		POARK	HOUGH,	MA 020					
П	ł									U.S. EPA ID N	Number			
П		an Harbors Envi ansporter 2 Company Nam		ervices, Inc.		. *				M.A.D.O		1222	5.0	
$\parallel \parallel$	7. "	ansponer 2 company man	re:							ט.ט. בראוט א 	IUI IDBI			
П	8. De	esignated Facility Name an	d Site Address							U.S. EPA ID N	lumber			
П	1	an Harbors of Br								0.	**************************************			
Н	& Hi	# Avenue								MADO	534	526	37	
Ш	Facil	intree MA 0218)4 81\380.71	00						1				
П	9a.	9b. U.S. DOT Descripti	on (including Proper	- -	ard Class, IO Numb	er,		10. Contain	ers	11. Total	12. Unit	12	Waste Code	
П	НМ	and Packing Group (if a	any)) 	·				Na.	Туре	Quantity	Wt.∕Vol.			
١		NON DOT REGU	ILATED MAT	ERIAL, (OILY	DEBRIS)			レンコ	N. 4	200	0	A01	ĺ	
۱¥]		•	_			11 Z	ואַוען	300	[]			
GENERATOR	-	2.									 	 		
뱅		İ												
Ш		1.					i							
П		3.												
П		1												
П	_	4.									<u> </u>			
П] ^{4.}											į	
П														
Н	14. 8		ns and Additional Inf	ormation			i							
	1.₽	40179.				~ \- <	כר או							
П						2×5	ות רכ	•						
	hod	Y OR INITIAL TOURS	der to add or	substitute artiil	lonal transcort	005 00 000	ecators b	ensy es nu	macas a	Contract reta	tned by	generator	coulete s	Qency
П	15.	GENERATOR'S/OFFERO marked and labeled/place	R'S CERTIFICATIO	M: I hereby declare to expects in proper con-	het the contents of the	his consignment	I are fully an Vicable interr	d accurately de-	cribed above	by the proper sit	if every s	ie, and are ca	sameu, pacic	ageo, es y
Н		Exporter, I certify that the	contents of this cons	signment conform to th	e terms of the attac	ned EPA Ackno	wledgment o	f Consent.	•	•	0,,,,,,,,,	inprison arra r	21170-07111-11	w.,
Н	_	I certify that the waste minerator's/Offeror's Printed/Ty		Identified in 40 CFR 2	62.27(a) (it i am a i		enerator) or (D) (ITI am a sma	ıı dnautıtà de	nerator) is true.		Mo	nth Day	Year
\prod	ピ	· Enstace	ar ac	est for	Muse 91				d	7/-	-		2/22	
بَإ	16. ir	nternational Shipments	Import to		<u></u>	Export from	1118	Port of end	nulevit:				<u> </u>	<u>-1 — * -</u> :
I,L	Tran	sporter signature (for expo				Export from		Date leavi	, -					
		ransporter Acknowledgmen		rials										
TRANSPORTER	Trans	sporter 1 Printed/Typed.Na				Si	ignature			1		Mor	ال ال	1, Asar
§	Trans	sporter 2 Printed/Typed Na	Stace				-	1			,	No.	nth Day	<u> 161</u>
18	""	oportor E i timour typeo ito	****			J.	gnature					1	III Day	Year 1
ᄩ	_	Discrepancy												
Ш	⊢	Discrepancy Indication Spa	ace		Туре] _{Bid}		Doring Dail			Full Rej	
Ш		•	ave ∐ Quar	питу	∟⊥туре			Residue		L_∃ Partial Rej	ecuon		Jrem Reje	ecaon
ľ	L	. <u> </u>					Mar	ifest Reference	Number:					
FACILITY	18b.	Alternate Facility (or Gener	rator)							U.S. EPA ID N	iumber			
힣		·								1				
lë.	18c.	ity's Phone: Signature of Alternate Faci	lity (or Generator)							<u> </u>		— Тм	onth Day	Year
ΙĘ		-	,										L Í	1
DESIGNATED	19. H	lazardous Waste Report M	anagement Method	Codes (i.e., codes for	hazardous waşte tı	reatment, dispos	sai, and recy	ding systems)						•
Ü				2.		3.		-		4.				
1		41		1						<u> L</u>				
$\ \ $		esignated Facility Owner of ed/Typed Name	or Operator: Certifica	ation of receipt of haza	rdous materials con		nifest except ignature	as noted in Hen	18a			14	nth Day	Year
\prod	1	ture to	toana			I I	ignature / 2\	m l	\sim	1 1		1.2	177	121
EP/	A Form	n 8709-22 (Rev. 12-17)		s are obsolete.			- 13 7	7 0	CNATE	FAGILITY	TO ED	<u>اح ا</u> ۱۵ مـ ۱۵ ما ۱۵	UFFRT (
		an Harbors has the	-		accept the w	aste the gen) nerator is		ISKA I EI	,		4 8 6-mai 2 26-00		PW PW
			•		•	3	/-	, ,		₩ 00 11.	AA10A	ィエエリアマン	- FT	-

5403

Generator acknowledges that no material change has occurred either in the characteristics or in the process generating the material.

Form Approved. OMB No. 2050-0039 Please print or type. UNIFORM HAZARDOUS 1. Generator ID Number 2. Page 1 of | 3. Emergency Response Phone Manifest Tracking Number 0155131 64 WASTE MANIFEST MAC300012655 (800) 483-3718 Generators Name and Mailing Address Generator's Site Address (if different than mailing address) 10 Sylvan Road 131 MORSE STREET Waltham, MA 02481 FOXBOROUGH MA 02035 Generator's Phor**6781) 907-3647** ATTN:Susan Brochu 6. Transporter 1 Company Name U.S. EPA ID Number Clean Harbors Environmental Services, Inc M A D O 3 9 3 2 2 2 5 0 7. Transporter 2 Company Name 8. Designated Facility Name and Site Address U.S. EPA ID Number a Harbors of Braintree Inc MADOB2452227 Hill Avenue Facility's Phone: (781) 380.7100 10. Containers 9b. U.S. DOT Description (including Proper Shipping Name, Hazard Class, ID Number, 11. Total 12. Unit 13. Waste Codes and Packing Group (if any)) Quantity Wit/Vol нм Туре ION DOT REGULATED MATERIAL, (OILY SOLIDS) GENERATOR 003 001 14. Special Handling Instructions and Additional Information . R40179 . 3 Contract retained by generator confirs agency


15. GENERATOR SOFTEROR'S CERTIFICATION: I hereby declare that the contents of this consignment are fully and accurately described above by the proper shipping name, and are classified, packaged, marked and labeled/placarded, and are in all respects in proper condition for transport according to applicable international and national governmental regulations. If export shipment and I am the Primary Exporter, I certify that the contents of this consignment conform to the terms of the attached EPA Acknowledgment of Consent. | certify that the waste minimization statement identified in 40 CFR 262.27(a) (if I am a large quantity generator) or (b) (if I am a small quantity generator) is true. For Meco Day Generator's/Offeror's Printed/Typed Name Signature 18. International Shipments Import to U.S. Export from U.S. Port of entry/exit: Date leaving U.S. Transporter signature (for exports only): 17. Transporter Acknowledgment of Receipt of Materials TRANSPORTER Transporter 1 Printed/Typed Name Month Day Year Q Transporter 2 Printed/Typed Name 18. Discrepancy Птуре 18a. Discrepancy Indication Space Partial Rejection Residue Full Rejection Quantity Manifest Reference Number U.S. EPAID Number 18b. Alternate Facility (or Generator) Facility's Phone: DESIGNATED 18c. Signature of Alternate Facility (or Generator) Month Day 19. Hazardous Waste Report Management Method Codes (I.e., codes for hazardous waste treatment, disposal, and recycling systems) 20. Designated Facility Owner or Operator: Gertification of receipt of hazardous materials covered by the manifest except as noted in Item 18a Printed/Typed Name Signature luna Many 2(EPA Form 8700-22 (Rev. 12-17) Previous editions are obsolete. DESIGNATED FACILITY TO EPA's e-MANIFEST SYSTEM

Generator acknowledges that no material change has occurred either in the characteristics or in the process generating the material Form Approved. OMB No. 2050-0039 Please print or type 1. Generator ID Number
M A C 3 0 0 0 1 2 6 5 5 2. Page 1 of 3. Emergency Response Phone **1 (800) 483-3718** UNIFORM HAZARDOUS 015519880 (800) 483-3718 **WASTE MANIFEST** Generator's Site Address (if different than mailing address) 5. Massachusetts Préciric Company 40 Sylvan Road **131 MORSE STREET** Waltham, MA 02451 FOXBOROUGH,MA 02035 Generator's Phone: (781) 907-3647 ATTN:Susan Brochu U.S. EPA ID Number 6. Transporter 1 Company Name Clean Harbors Environmental Services, Inc. MAD039322250 7. Transporter 2 Company Name U.S. EPA ID Number 8. Designated Facility Name and Site Address U.S. EPA ID Number Clean Harbors of Braintree Inc MAD053452637 1 Hill Avenue Braintree, MA 02184 (781) 380-7100 Facility's Phone: 9b. U.S. DOT Description (including Proper Shipping Name, Hazard Class, ID Number, 10. Containers 11. Total 12 Uni 13. Waste Codes and Packing Group (if any)) Quantity Wit (Vol HM No. Type NON DOT REGULATED MATERIAL, (OILY SOLIDS) MA01 GENERATOR TT XXI 14 Special danning Ingructions and Additional Information Contract retained by generator confers agency substitute additional transporters on generator's behalf for purposes of transportation efficiency, convenience, or safet GENERATOR'S/OFFEROR'S CERTIFICATION: I hereby declare that the contents of this consignment are fully and accurately described above by the proper shipping name, and are classified, packaged, marked and labeled/placarded, and are in all respects in proper condition for transport according to applicable international and national governmental regulations. If export shipment and I am the Primary Exporter, I certify that the contents of this consignment conform to the terms of the attached EPA Acknowledgment of Consent. I certify that the waste minimization statement identified in 40 CFR 262.27(a) (if i am a large quantity generator) or (b) (if I am a small quantity generator) is true. Month Generator's/Offeror's Printed/Typed Name Signature Year Cody Hook I too import to U.S. Export from U.S. Port of entry/exit: Date leaving U.S.: Transporter signature (for exports only): 17. Transporter Acknowledgment of Receipt of Materials Transporter 1 Printed/Typed Name Signature Month Day Year a (ody <u> 303,</u> Hamilton Transporter 2 Printed/Typed Nam Month 18. Discrepancy 18a. Discrepancy Indication Space Type __ Residue Partial Rejection Quantity _ Full Rejection Manifest Reference Number 18b. Alternate Facility (or Generator) U.S. EPA ID Number Facility's Phone 18c. Signature of Alternate Facility (or Generator) Day Year 19. Hazardous Waste Report Management Method Codes (i.e., codes for hazardous waste treatment, disposal, and recycling systems) H141 20. Designated Facility Owner or Operator: Certification of receipt of hazardous materials covered by the manifest except as noted in Item 18a Signature EPA Form 870 42/80% 1/25 in Propos printer beings for and will accept the waste the generator is an interior parties.

5403

Generator acknowledges that no material change has occurred either in the characteristics or in the process generating the material.

Comparing Action Company Compa
AD 0 3 9 3 2 2 2 5 0 Transporter Company Name
Waitham, MA 02451 6-Transporter (Company Name Clean Harbors Environmental Services, Inc. 7-Transporter 2 Company Name U.S. EPA ID Number U.S. EPA
Clean Harbors of Braintree Inc 1 Hill Avenue Braintree, MA 02194 Facility Phone. 7. Itansporter 2 Company Name U.S. EPAID Number U.S. EPA
7 Transporter 2 Company Name 9. Designated Facility Name and Site Address Clean Harbors of Braintree Inc 1 Hill Avenue Braintree, MA D 0 5 3 4 6 2 6 3 7 M A D 0 5 3 4 6
Clean Harbors of Braintree Inc 1 Hill Avenue Braintree, MA 02184 Facility Phone. (751) 380-7100 9a. 3b. U.S. DOT Description (reduding Proper Shipping Name, Hazard Class, ID Number; No. Type Coartity ML/vol. 13. Waste Codes 1. NON DOT REGULATED MATERIAL, (OILY SOLIDS) 1. NON DOT REGULATED MATERIAL, (OILY SOLIDS) 3. 3. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4.
Clean Harbors of Braintree Inc 1 Hill Avenue Braintree, MA 02184 Facility Phone. 1781 380-7100 9a. 3b. U.S. DOT Description (robuding Proper Shipping Name, Hazard Class, ID Number, No. Type Containers 11. Total 12. Unit not Packing Group (f anyl) 1. NON DOT REGULATED MATERIAL, (OILY SOLIDS) 1. NON DOT REGULATED MATERIAL, (OILY SOLIDS) 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3
Braintree, MA 02.194 Facility's Phone: (781) 380-7100 9a. But. S. DOT Description (including Proper Shipping Name, Hazard Class, ID Number, No. Type Ocarity) W1/Vol. 13. Waste Codes w1. No. Type Ocarity W1.Vol. 14. No. Type Ocarity W1.Vol. 15. Waste Codes w1. No. Type Ocarity W1.Vol. 15. Waste Codes w1. No. Type Ocarity W1.Vol. 16. Waste Codes w1. No. Type Ocarity W1.Vol. 17. NON DOT REGULATED MATERIAL, (OILY SOLIDS) 14. Sagrial Hanging Instructions and Additional Information 14. Sagrial Hanging Instructions and Additional Information 15. GENERATOR'S/OFFEROR'S CERTIFICATION: Interby declare that the contents of this consignment are fully and accurately described above by the proper shipping rame, and are classified, packaged marked and labeled/plearated, and are in all respects in proper condition to the terms of the attached EPA-Achnowledgment of Corsent. 1 certify that the waste minimization statement identified in 40 CFR 262.27(a) (fil am a large quantity generator) c.D) (fit am a small quantity generator) statement identified in 40 CFR 262.27(a) (fil am a large quantity generator) c.D) (fit am a small quantity generator) fit and the contents of this consignment control to the statched EPA-Achnowledgment of Corsent.
9a. 9b. U.S. DOT Description (including Proper Shipping Name, Hazard Class, ID Number, 10. Containers 11. Total And Packing Group (if any)) 1. NON DOT REGULATED MATERIAL. (OILY SOLIDS) 2. MA01 4. Segial Handling Instructions and Additional Information 3. Contract retained by generator confers age but for purposes of transportation efficiency convenience or statement and and sebeed/placarded, and are in all respects in proper confision for transport according to applicable international aroundaries. If export shipment and I am the Primary Exporter, I cartify that the contents of the confers of the confers of the confers in the confers of the sconsignment of the sconsignment of Consent. 1 toertify that the waste minimization statement identified in 40 CFR 262 27(a) (if I am a large quantity generator) or (b) (if I am a sme) quantity generator for the sconsignment of Consent.
And Packing Group (if any)) 1. NON DOT REGULATED MATERIAL, (OILY SOLIDS) 2. 3. 4. 4. List pack Handing Instructions and Additional Information Authority on Initial transporter to add or substitute additional transporters on generator's behalf for purposes of transportation efficiency convenience or single Exports (and are in a inspect in proper condition for branch and accurately described above by the proper shipping name, and are classified, packaged, marked and labeled/placarded, and are in all respects in proper condition for branch Exports. I certify that the waste minimization statement identified in 40 CFR 282 27(a) (if I am a large quantity generator) could fill a mass may quantity generator). In the large the proper shipping name, and are dissuffied, packaged, marked and labeled/placarded, and are in all respects in proper condition for branch EPA Acknowledgement of Consent. 1 certify that the waste minimization statement identified in 40 CFR 282 27(a) (if I am a large quantity generator) or the large transport of the consent of the consent of Consent.
3. 14. Special Handing Instructions and Additional Information 1. P40179 B Contract retained by generator confiers age authority on Initial transporter to add or substitute additional transporters on generator's behalf for purposes of transportation efficiency convenience or selections. The purpose of transportation efficiency convenience or selections and additional transporters on generator's behalf for purposes of transportation efficiency convenience or selections. The purpose of transportation efficiency convenience or selections and additional deficiency convenience or selections. The purpose of transportation efficiency convenience or selections and additional deficiency convenience or selections. The purpose of transportation of the sense of the additional powermental regulations. If export shipment and I am the Primary Exporter, I certify that the orders of this consignment conform to the terms of the attached EPA Action/webdyment of Consent. 1 certify that the waste minimization statement identified in 40 CFR 262 27(a) (if I am a large quantity generator) or the purpose of the purpose of transportation of the terms of the attached EPA Action/webdyment of Consent. 1 certify that the waste minimization statement identified in 40 CFR 262 27(a) (if I am a large quantity generator) or the purpose of transportation of the terms of the statement identified in 40 CFR 262 27(a) (if I am a large quantity generator) or the purpose of transport and the purpose of tra
3. 14. Special Handling Instructions and Additional Information Contract retained by generator confers age authority on Initial transporter to add or substitute additional transporters on generator's behalf for purposes of transportation efficiency convenience, or si 15. GENERATOR'S/OFFEROR'S CERTIFICATION: I hereby declare that the contents of this consignment are fully and accurately described above by the proper shipping ame, and are classified, packaged, marked and labeled/plecarded, and are in all respects in proper condition for transport according to applicable international and national governmental regulations. If export shipment and I am the Primary Exporter, I certify that the contents of this consignment conform to the terms of the attached EPA Acknowledgment of Consent. 1 certify that the waster minimization statement identified in 40 CFR 262 27(a) (if I am a large quantity generator) or the proper shipping that the contents of the contents of the attached EPA Acknowledgment of Consent.
3. 14. Special Handling Instructions and Additional Information Contract retained by generator confers age authority on Initial transporter to add or substitute additional transporters on generator's behalf for purposes of transportation efficiency convenience, or si 15. GENERATOR'S/OFFEROR'S CERTIFICATION: I hereby declare that the contents of this consignment are fully and accurately described above by the proper shipping ame, and are classified, packaged, marked and labeled/plecarded, and are in all respects in proper condition for transport according to applicable international and national governmental regulations. If export shipment and I am the Primary Exporter, I certify that the contents of this consignment conform to the terms of the attached EPA Acknowledgment of Consent. 1 perify that the waste minimization statement identified in 40 CFR 262-27(a) (if I am a large quantity generator) or the proper statement identified in 40 CFR 262-27(a) (if I am a large quantity generator) or the large quantity generator) as the proper statement identified in 40 CFR 262-27(a) (if I am a large quantity generator) or the large quantity generator) as the proper statement identified in 40 CFR 262-27(a) (if I am a large quantity generator) or the large quantity generator).
3. 14. Special Handling Instructions and Additional Information Contract retained by generator confers age authority on Initial transporter to add or substitute additional transporters on generator's behalf for purposes of transportation efficiency convenience, or si 15. GENERATOR'S/OFFEROR'S CERTIFICATION: I hereby declare that the contents of this consignment are fully and accurately described above by the proper shipping ame, and are classified, packaged, marked and labeled/plecarded, and are in all respects in proper condition for transport according to applicable international and national governmental regulations. If export shipment and I am the Primary Exporter, I certify that the contents of this consignment conform to the terms of the attached EPA Acknowledgment of Consent. 1 perify that the waste minimization statement identified in 40 CFR 262-27(a) (if I am a large quantity generator) or the proper statement identified in 40 CFR 262-27(a) (if I am a large quantity generator) or the large quantity generator) as the proper statement identified in 40 CFR 262-27(a) (if I am a large quantity generator) or the large quantity generator) as the proper statement identified in 40 CFR 262-27(a) (if I am a large quantity generator) or the large quantity generator).
Contract retained by generator confers age authority on initial transporter to add or substitute additional transporters on generator's behalf for purposes of transportation efficiency convenience or si 15. GENERATOR'S/OFFEROR'S CERTIFICATION: I hereby declare that the contents of this consignment are fully and accurately described above by the proper shipping name, and are classified, packaged, marked and labeled/placarded, and are in all respects in proper condition for transport according to applicable international and national governmental regulations. If export shipment and I am the Primary Exporter, I certify that the contents of this consignment conform to the terms of the attached EPA Acknowledgment of Consent. 1 certify that the waste minimization statement identified in 40 CFR 262-27(a) (if I am a large quantity generator) or (b) (if I am a small quantity generator) is true.
Contract retained by generator confers age authority on initial transporter to add or substitute additional transporters on generator's behalf for purposes of transportation efficiency convenience or si 15. GENERATOR'S/OFFEROR'S CERTIFICATION: I hereby declare that the contents of this consignment are fully and accurately described above by the proper shipping name, and are classified, packaged, marked and labeled/placarded, and are in all respects in proper condition for transport according to applicable international and national governmental regulations. If export shipment and I am the Primary Exporter, I certify that the contents of this consignment conform to the terms of the attached EPA Acknowledgment of Consent. 1 certify that the waste minimization statement identified in 40 CFR 262-27(a) (if I am a large quantity generator) or (b) (if I am a small quantity generator) is true.
14. Special Handling Instructions and Additional Information 1. P. 10 1.79 Ib Contract retained by generator confers age authority on Initial transporter to add or substitute additional transporters on generator's behalf for purposes of transportation efficiency convenience or si 15. GENERATOR'S/OFFEROR'S CERTIFICATION: I hereby declare that the contents of this consignment are fully and accurately described above by the proper shipping name, and are classified, packaged, marked and labeled/placarded, and are in all respects in proper condition for transport according to applicable international and national governmental regulations. If export shipment and I am the Primary Exporter, I certify that the contents of this consignment conform to the terms of the attached EPA Acknowledgment of Consent. 1 certify that the waste minimization statement identified in 40 CFR 262.27(a) (if I am a large quantity generator) or (b) (if I am a small quantity generator) is true.
14. Special Handling Instructions and Additional Information 1. P. 10 1.79 Ib Contract retained by generator confers age authority on Initial transporter to add or substitute additional transporters on generator's behalf for purposes of transportation efficiency convenience or si 15. GENERATOR'S/OFFEROR'S CERTIFICATION: I hereby declare that the contents of this consignment are fully and accurately described above by the proper shipping name, and are classified, packaged, marked and labeled/placarded, and are in all respects in proper condition for transport according to applicable international and national governmental regulations. If export shipment and I am the Primary Exporter, I certify that the contents of this consignment conform to the terms of the attached EPA Acknowledgment of Consent. 1 certify that the waste minimization statement identified in 40 CFR 262.27(a) (if I am a large quantity generator) or (b) (if I am a small quantity generator) is true.
Contract retained by generator confers age authority on Initial transporter to add or substitute additional transporters on generator's behalf for purposes of transportation enciency convenience or si 15. GENERATOR'S/OFFEROR'S CERTIFICATION: I hereby declare that the contents of this consignment are fully and accurately described above by the proper shipping name, and are classified, packaged, marked and lebeled/placarded, and are in all respects in proper condition for transport according to applicable international governmental regulations. If export shipment and I am the Primary Exporter, I cartify that the contents of this consignment conform to the terms of the attached EPA Acknowledgment of Consent. 1 certify that the waste minimization statement identified in 40 CFR 262-27(a) (if I am a large quantity generator) or (b) (if I am a small quantity generator) at the contents of the statement identified in 40 CFR 262-27(a) (if I am a large quantity generator) or (b) (if I am a small quantity generator) at the contents of the statement identified in 40 CFR 262-27(a) (if I am a large quantity generator) or (b) (if I am a small quantity generator) at the contents of the statement identified in 40 CFR 262-27(a) (if I am a large quantity generator) or (b) (if I am a small quantity generator) at the contents of the statement identified in 40 CFR 262-27(a) (if I am a large quantity generator) or (b) (if I am a small quantity generator) at the contents of the statement identified in 40 CFR 262-27(a) (if I am a large quantity generator) at the contents of the statement identified in 40 CFR 262-27(a) (if I am a large quantity generator) at the contents of the statement identified in 40 CFR 262-27(a) (if I am a large quantity generator) at the contents of the statement identified in 40 CFR 262-27(a) (if I am a large quantity generator) at the contents of the statement identified in 40 CFR 262-27(a) (if I am a large quantity generator) at the contents of the statement identified in 40 CFR 262-27(a) (if I am a large q
Contract retained by generator confers age authority on Initial transporter to add or substitute additional transporters on generator's behalf for purposes of transportation enciency convenience or si 15. GENERATOR'S/OFFEROR'S CERTIFICATION: I hereby declare that the contents of this consignment are fully and accurately described above by the proper shipping name, and are classified, packaged, marked and lebeled/placarded, and are in all respects in proper condition for transport according to applicable international governmental regulations. If export shipment and I am the Primary Exporter, I cartify that the contents of this consignment conform to the terms of the attached EPA Acknowledgment of Consent. 1 certify that the waste minimization statement identified in 40 CFR 262-27(a) (if I am a large quantity generator) or (b) (if I am a small quantity generator) at the contents of the statement identified in 40 CFR 262-27(a) (if I am a large quantity generator) or (b) (if I am a small quantity generator) at the contents of the statement identified in 40 CFR 262-27(a) (if I am a large quantity generator) or (b) (if I am a small quantity generator) at the contents of the statement identified in 40 CFR 262-27(a) (if I am a large quantity generator) or (b) (if I am a small quantity generator) at the contents of the statement identified in 40 CFR 262-27(a) (if I am a large quantity generator) or (b) (if I am a small quantity generator) at the contents of the statement identified in 40 CFR 262-27(a) (if I am a large quantity generator) at the contents of the statement identified in 40 CFR 262-27(a) (if I am a large quantity generator) at the contents of the statement identified in 40 CFR 262-27(a) (if I am a large quantity generator) at the contents of the statement identified in 40 CFR 262-27(a) (if I am a large quantity generator) at the contents of the statement identified in 40 CFR 262-27(a) (if I am a large quantity generator) at the contents of the statement identified in 40 CFR 262-27(a) (if I am a large q
Contract retained by generator confers age authority on Initial transporter to add or substitute additional transporters on generator's behalf for purposes of transportation enciency convenience or si 15. GENERATOR'S/OFFEROR'S CERTIFICATION: I hereby declare that the contents of this consignment are fully and accurately described above by the proper shipping name, and are classified, packaged, marked and lebeled/placarded, and are in all respects in proper condition for transport according to applicable international governmental regulations. If export shipment and I am the Primary Exporter, I cartify that the contents of this consignment conform to the terms of the attached EPA Acknowledgment of Consent. 1 certify that the waste minimization statement identified in 40 CFR 262-27(a) (if I am a large quantity generator) or (b) (if I am a small quantity generator) at the contents of the statement identified in 40 CFR 262-27(a) (if I am a large quantity generator) or (b) (if I am a small quantity generator) at the contents of the statement identified in 40 CFR 262-27(a) (if I am a large quantity generator) or (b) (if I am a small quantity generator) at the contents of the statement identified in 40 CFR 262-27(a) (if I am a large quantity generator) or (b) (if I am a small quantity generator) at the contents of the statement identified in 40 CFR 262-27(a) (if I am a large quantity generator) or (b) (if I am a small quantity generator) at the contents of the statement identified in 40 CFR 262-27(a) (if I am a large quantity generator) at the contents of the statement identified in 40 CFR 262-27(a) (if I am a large quantity generator) at the contents of the statement identified in 40 CFR 262-27(a) (if I am a large quantity generator) at the contents of the statement identified in 40 CFR 262-27(a) (if I am a large quantity generator) at the contents of the statement identified in 40 CFR 262-27(a) (if I am a large quantity generator) at the contents of the statement identified in 40 CFR 262-27(a) (if I am a large q
15. GENERATOR'S/OFFEROR'S CERTIFICATION: I hereby declare that the contents of this consignment are fully and accurately described above by the proper shipping name, and are classified, packaged, marked and labeled/placarded, and are in all respects in proper condition for transport according to applicable infermational and national governmental regulations. If export shipment and I am the Primary Exporter, I certify that the contents of this consignment conform to the terms of the attached EPA Acknowledgment of Consent. 1 certify that the waste minimization statement identified in 40 CFR 262.27(a) (if I am a large quantity generator) or (b) (if! am a small quantity generator) is true.
15. GENERATOR'S/OFFEROR'S CERTIFICATION: I hereby declare that the contents of this consignment are fully and accurately described above by the proper shipping name, and are classified, packaged, marked and labeled/placarded, and are in all respects in proper condition for transport according to applicable infermational and national governmental regulations. If export shipment and I am the Primary Exporter, I certify that the contents of this consignment conform to the terms of the attached EPA Acknowledgment of Consent. 1 certify that the waste minimization statement identified in 40 CFR 262.27(a) (if I am a large quantity generator) or (b) (if! am a small quantity generator) is true.
15. GENERATOR'S/OFFEROR'S CERTIFICATION: I hereby declare that the contents of this consignment are fully and accurately described above by the proper shipping name, and are classified, packaged, marked and labeled/placarded, and are in all respects in proper condition for transport according to applicable international and national governmental regulations. If export shipment and I am the Primary Exporter, I certify that the contents of this consignment conform to the terms of the attached EPA Acknowledgment of Consent. 1 certify that the waste minimization statement identified in 40 CFR 262-27(a) (if I am a large quantity generator) or (b) (if I am a small quantity generator) is true.
Exporter, I cartify that the contents of this consignment conform to the terms of the attached EPA Acknowledgment of Consent. 1 certify that the waste minimization statement identified in 40 CFR 262.27(a) (if I am a large quantity generator) or (b) (if I am a small quantity generator) is true.
1 certify that the waste minimization statement identified in 40 CFR 262.27(a) (if I am a large quantity generator) or (b) (if I am a small quantity generator) is true.
General Department of France Types I sales
(A 1 1 - 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 1 1
Transporter signature (for exports only): Transporter signature (for exports only): Export from U.S. Export from U.S. Port of entry/exit: Date leaving U.S.: Port of entry/exit: Port
Transcorter (Printed/Typed, Name) Signatury Month Day Yel
Christopher C Dowen Chts Chin 10212912
Transporter 2 Printed/Typed Name Signature Signature Month Day Yes
18. Discrepancy 18a. Discrepancy Indication Space Quantity Type Residue Partial Rejection Full Rejection
18a. Discrepancy Indication Space Quantity Type Residue Partial Rejection Full Rejection
Manifest Reference Number:
18b. Alternate Facility (or Generator) U.S. EPA ID Number
1 18b. Alternate Facility (or Generator) U.S. EPA ID Number
Facility's Phone:
Facility's Phone:
Facility's Phone: 18c. Signature of Atternate Facility (or Generator) Month Day You
Facility's Phone: 18c. Signature of Alternate Facility (or Generator) Month Day You have a signature of Alternate Facility (or Generator) 19. Hazardous Waste Report Management Method Codes (i.e., codes for hazardous waste treatment, disposal, and recycling systems)
Facility's Phone: 18c. Signature of Alternate Facility (or Generator) 19. Hazardous Waste Report Management Method Codes (i.e., codes for hazardous waste treatment, disposal, and recycling systems) 1. H141.
Facility's Phone: 18c. Signature of Alternate Facility (or Generator) 19. Hazardous Waste Report Management Method Codes (i.e., codes for hazardous waste treatment, disposal, and recycling systems) 1. H141. 2. 3. 4. 20. Designated Facility Owner or Operator: Certification of receipt of hazardous materials covered by the manifest except as noted in Item 18a
Facility's Phone: 18c. Signature of Alternate Facility (or Generator) 19. Hazardous Waste Report Management Method Codes (i.e., codes for hazardous waste treatment, disposal, and recycling systems) 1. H141. 2. 3. 4.

TO MAKE TO THE

Generator acknowledges that no material change has occurred either in the characteristics or in the process generating the material.

Form Approved, OMB No. 2050-0039 Please print or type 1. Generator ID Number UNIFORM HAZARDOUS 2. Page 1 of 3. Emergency Response Phone 4. Manifest Tracking Number MAC300012655 1 **WASTE MANIFEST** (800) 483-3718 Generator's Site Address (if different than mailing address) Generator's Name and Mailies Address Massachusetts Electric Company 40 Sylvan Road 131 Morse Street Waltham, MA 02451 Foxboro,MA 02035 Generator's Phone: (781) 907-3647 ATTN:Susan Brochu Transporter 1 Company Name U.S. EPA ID Number Clean Harbors Environmental Services, Inc. MAD039322250 7. Transporter 2 Company Name U.S. EPA ID Number 8. Designated Facility Name and Site Address U.S. EPA ID Number Clean Harbors of Braintree Inc. MAD053452637 1 Hill Avenue Braintree, MA 02184 (781) 380-7100 9b. U.S. DOT Description (including Proper Shipping Name, Hazard Class, ID Number, 10. Containers ga. 11. Total 12. Unit 13. Waste Codes and Packing Group (if any)) нм Quantity Wt./Vol. No. Type NON DOT REGULATED MATERIAL, (OILY DEBRIS) **MA01** GENERATOR 200 001 14 Special Handling Instructions and Additional Information Contract retained by generator confers agency authority on initial transporter to add or substitute additional transporters on generator's behalf for purposes of transportation efficiency, convenience, or safety 15. GENERATOR'S/OFFEROR'S CERTIFICATION: I hereby declare that the contents of this consignment are fully and accurately described above by the proper shipping name, and are classified, packaged, marked and labeled/placarded, and are in all respects in proper condition for transport according to applicable international and national governmental regulations. If export shipment and I am the Primary Exporter, I certify that the contents of this consignment conform to the terms of the attached EPAAcknowledgment of Consent. Leartify that the waste minimization statement identified in 40 CFR 262.27(a) (if I am a large quantity generator) or (b) (if I am a small quantity generator) is true Generator's/Offeror's Printed/Typed Name SAMUEL DICICCO Month Year ON BEHALF OF MASSACHUSETTS Electric Company 21 6. International Shipments Export from U.S. Import to U.S. Port of entry/exit: Transporter signature (for exports only): Date leaving U.S.: 17. Transporter Acknowledgment of Receipt of Materials Transporter 1 Printed/Typed Name Month Signature Day Year 2/ AMUEL 11 Transporter 2 Printed/Typed Name Year 18. Discrepancy 18a. Discrepancy Indication Space _____ Туре Full Rejection Partial Rejection Manifest Reference Number: 18b. Alternate Facility (or Generator) U.S. EPA ID Number Facility's Phone: 18c. Signature of Alternate Facility (or Generator) Month Day Year 19. Hazardous Waste Report Management Method Codes (i.e., codes for hazardous waste treatment, disposal, and recycling systems) H141 20. Designated Facility Owner or Operator: Certification of receipt of hazardous materials covered by the manifest except as noted in Item 18a ď

EPA Form 8700-22 (Rev. 12-17) Previous editions are obsolete.

Clean Harbors has the appropriate permits for and will accept the waste the generator is shipping.

DESIGNATED FACILITY TO EPA's e-MANIFEST SYSTEM SB 2005122795-001 PPW

TR# 80 825

Generator acknowledges that no material change has occurred either in the characteristics or in the process generating the material.

Plea	ease print or type.							Approved.	OMB No.	2050-0039
1	UNIFORM HAZARDOUS N 1 Peperal WASTE MANIFEST		2. Page 1 of 3. Em (80)	ergency Respons) 483-37	e Phone 18		Tracking Nu 551	998	6 F	FLE
Ш	Massachusetts Electric©o	mpany	Genera	tor's Site Address	(if different th					
$\ $	40 Sylvan Road Waltham, MA 02451 (781) 907-3647	7 ATTN:Susan Brochu		Morse Stre oro,MA 02						
Ш	Generator's Phone:	At the Susan Brochu								
$\ $	6. Transporter 1 Company Name Clean Harbors Environmen	tal Services, Inc.				U.S. EPAID (2225	i ()	
$\ $	7. Transporter 2 Company Name					U.S. EPA ID I				
				<u></u>		<u></u>				
	8. Designated Facility Name and Site Addre Clean Harbors of Braintree 1 Hill Avenue Braintree, MA 02184	lnc				MAD (5263	; 7	
П	Facility's Phone: (781) 380)-/100 				i	, ,			
	9a. 9b. U.S. DOT Description (including and Packing Group (if any))	Proper Shipping Name, Hazard Class, ID Number,		10. Contai	ners Type	11. Total Quantity	12. Unit Wt./Vol.	13. Y	Waste Code	95
	NON DOT REGULATED	MATERIAL, (OILY DEBRIS)					N	A01		
GENERATOR				003	OM	300	7			
I S	2.			000	<i></i>					
20							<u> </u>			
	3.				<u> </u>					ļ
Ш	"									
$\ \ $										
	4.									
							<u> </u>			
,	14 Special Handling Instructions and Addition	onal Information					<u>!</u>	i		:
$\ \ $	14 Secretal Handling Instructions and Addition									
	disputition and desident and the second					Contract reta	lined by a	enerator o	confers a	Mency
1	15 GENERATOR'S/OFFEROR'S CERTIF	OF GUDSTITUTE Additional transporters FICATION: I hereby declare that the contents of this	S Off generator's	behalf for pi	Tabosés G	transportati	on efficier	<u> ICY.COMVer</u>	nience.o	rsafety
$\ \ $	marked and labeled/placarded, and are	e in all respects in proper condition for transport according consignment conform to the terms of the attached	ording to applicable int	emational and nat	ional governm	ental regulations	. If export ship	pment and la	ım the Prim	ary
	I certify that the waste minimization sta	atement identified in 40 CFR 262.27(a) (if I am a large			all quantity ge	nerator) is true.				
	Generator's/Offeror's Printed/Typed Name	DAVIL ACCARD	Signature	\mathcal{L}	III			Mont 4	th Day	Year
⊬	16. International Shipments	Achusetts Elearic Compa		N.	<u>u</u>		_ _		^	
Ę	Transporter signature (for exports only):	mport to U.S.	Export from U.S.	Port of er Date leav						
	·	of Materials	_							
TRANSPORTER	Transporter 1 Printed/Typed Name	1.000	Signature I	n	1 (1	D		Mont I ┺	th Day	Year
PS P	Transporter 2 Printed/Typed Name	CCARD:	Signature	ارك				Moni	th Day	
₹	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,							1		1
<u>↑</u>	18. Discrepancy	· - ·	<u></u>							
	18a. Discrepancy Indication Space	Quantity Type	i	Residue		Partial Re	ection		Full Reje	ection
Ш				6	- N N					
	18b. Alternate Facility (or Generator)	*****	p	lanifest Reference	e Number:	U.S. EPA ID I	Number			
FACILITY						_				
										
¥.	18c. Signature of Alternate Facility (or General	rator)						Mor	nth Day I	y Year
S	19 Hazardous Waste Report Management to	Method Codes (i.e., codes for hazardous waste treati	ment, disposal, and re	cyclino systems)						
DESIGNATED	1444	2.	3.	-1	. —	4.		<u></u> .		_
	1141									
		Certification of receipt of hazardous materials covere		ept as noted in Iter	m 18a			Mon	nth Day	Year
	Printed/Typed Name	(Medin	Signature I	5	/ /	V~	l- ^	won ∡^ [iai Day iai α જે	-121
ED/	A Form 8700-22 (Rev. 12-17). Previous (editions are obsolete.		NES	IGNATE	EACILITY	TO EPA	's a-MAN	IFFST (SYSTEM

Form 8700-22 (Rev. 42-17) Previous editions are obsolete.

Clean Harbors has the appropriate permits for and will accept the waste the generator is shipping.

DESIGNATED FACILITY TO EPA's e-MANIFEST SYSTEM
SE 2005122795-001 PPW

#80619

Generator acknowledges that no material change has occurred either in the characteristics or in the process generating the material.

Form Approved, OMB No. 2050-0039 Please print or type 2. Page 1 of 3. Emergency Response Phone 1. Generator ID Number I. Manifest Tracking Number UNIFORM HAZARDOUS 01582949 MAC300012655 1 (800) 483-3718 **WASTE MANIFEST** Generator's Site Address (if different than mailing address) Generator's Name and Mailing Address
Massachusetts Electric Company 40 Sylvan Road 131 Morse Street Waltham, MA 02451 Foxborough, MA 02035 ATTN:Susan Brochu Generator's Phone: (781) 907-3647 U.S. EPAID Number 6. Transporter 1 Company Name Clean Harbors Environmental Services, Inc. MAD039322250 7. Transporter 2 Company Name II S EPAID Number 8. Designated Facility Name and Site Address U.S. EPA ID Number Clean Harbors of Braintree Inc M AD 053452637 1 Hill Avenue Braintree, MA 02184 (781) 380-7100 **Tabilit∕s Phone:** 9b. U.S. DOT Description (Richarding Proper Shipping Name, Hazard Class, ID Number, 10. Containers 11. Total 12. Unit 13. Waste Codes and Packing Group (if any)) فيور No. Quantity Wt./Vol. Туре NON DOT REGULATED MATERIAL, (OILY DEBRIS) MA01 GENERATOR 14 Special Handling Instructions and Additional Information 3 x 55 Contract retained by generator confers agency authority on unusual transporter to add of substitute additional transporters on generators behalf for purposes of transportation efficiency, convenience, or safe 15. GENERATOR'S/OFFEROR'S CERTIFICATION: I hereby declare that the contents of this consignment are fully and accurately described above by the proper shipping name, and are classified, packaged, marked and labeled/placarded, and are in all respects in proper condition for transport according to applicable international and national governmental regulations. If export shipment and I am the Primary Exporter, I certify that the contents of this consignment conform to the terms of the attached EPA Acknowledgment of Consent. I certify that the waste minimization statement identified in 40 CFR 262.27(a) (if I am a large quantity generator) or (if Lam a necator) is true Month Year Import to U.S.Christran Port of entry/exit: Transporter signature (for exports only): Date leaving U.S.: 17. Transporter Acknowledgment of Receipt of Materials Transporter 1 Printed/Typed Name Month nristian 05 ŹΙ Transporter 2 Printed/Typed Name 18. Discrepancy 18a. Discrepancy Indication Space Type Quantity Residue Partial Rejection Full Rejection Manifest Reference Number: U.S. EPA ID Number 18b. Alternate Facility (or Generator) Facility's Phone: DESIGNATED Year 18c. Signature of Alternate Facility (or Generator) Month Day 19. Hazardous Waste Report Management Method Codes (i.e., codes for hazardous waste treatment, disposal, and recycling systems) 4. H141 20. Designated Facility Owner or Operator: Certification of receipt of hazardous materials covered by the manifest except as noted in Item 18a taana EPA Form 8700-22 (Rev. 12-17) Previous editions are obsolete.

Clean Harbors has the appropriate permits for and will accept the waste the generator is simplified.

SB 210241

404 15 Generator acknowledges that no material change has occurred either in the characteristics or in the process generating the material.

Form Approved. OMB No. 2050-0039 Please print or type. UNIFORM HAZARDOUS N. A.C. 30 0 0 1 2 6 5 5 2. Page 1 of 3. Emergency Response Phone **(800) 483-3718** 4. Manifest Tracking Number 015834702 WASTE MANIFEST Generator's Site Address (if different than mailing address) Massachusens Electric Company 40 Sylvan Road 131 Morse Street Wakham, MA 02451 Faaborough MA 02035 Generator's Phone (781) 907-3647 ATTN:Susan Brochu U.S. EPA ID Number 6. Transporter 1 Company Name Clean Harbors Environmental Services, Inc. MAD039322250 U.S. EPA ID Number 7. Transporter 2 Company Name 8. Designated Facility Name and Site Address U.S. EPA ID Number Clean Harbors of Braintree Inc MAD053452637 1 Hill Avenue Braintree, MA 02184 (781) 380-7100 Facility's Phone: 9b. U.S. DOT Description (including Proper Shipping Name, Hazard Class, ID Number, 10. Containers 11. Total 12 Unit 13. Waste Codes and Packing Group (if any)) нм Νo Туре Quantity Wt./Vol. ION-RCRA HAZARDOUS WASTE, SOLIDS, (OILY SOLIDS) NA01 GENERATOR 14 15 and a Paralling Instructions and Additional Informa Contract retained by generator confers agency phonting on initial transporter to add or substitute additional transporters on generator's behalf for purposes of transportation efficiency, convenience, or safety GENERATOR'S/OFFEROR'S CERTIFICATION: I hereby declare that the contents of this consignment are fully and accurately described above by the proper shipping name, and are classified, packaged, marked and labeled/placarded, and are in all respects in proper condition for transport according to applicable international and national governmental regulations. If export shipment and I am the Primary Exporter, I certify that the contents of this consignment conform to the terms of the attached EPA Acknowledgment of Consent. Loertify that the waste minimization statement identified in 40 CFR 262,27(a) (if I am a large quantity generator) or (b) (Inerator) is true rator's/Offeror's Printed/Typed Name Year ELLAND behalf it Muss 6. International Shipments Import to U.Ş. Export from U.S. Port of entry/exit: Transporter signature (for exports only): Date leaving U.S. 17. Transporter Acknowledgment of Receipt of Materials TRANSPORTER Transporter 1 Arinted/Typed Nami Transporter 2 Printed/Typed Nam 18. Discrepancy 18a. Discrepancy Indication Space Пуре Quantity Residue ___ Full Rejection Partial Rejection Manifest Reference Number. U.S. EPA ID Number 18b. Alternate Facility (or Generator) Facility's Phone: DESIGNATED Day Year 18c. Signature of Alternate Facility (or Generator) 19. Hazardous Waste Report Management Method Codes (i.e., codes for hazardous waste treatment, disposal, and recycling systems) H141 20. Designated Facility Owner or Operator: Certification of receipt of hazardous materials covered by the manifest except as noted in Item 18a Printed/Typed Name Kinsella EPA FORMATA AND IN APPROPRIATE PENNING WILL accept the waste the generator is shipping SIGNATED FACILITY TO FRANCE

Please print or type. erating the material OMB No. 2050-0039 1. Generator ID Number UNIFORM HAZARDOUS 2. Page 1 of 3. Emergency Response Phone 4. Manifest Tracking Number WASTE MANIFEST MAC300012655 1 016455987 (800) 483-3718 Generator's Name and Mailing Address
Massachusetts Electric Company enerator's Site Address (if different than mailing address) 40 Sylvan Road 131 Morse Street Waltham, MA 02451 Foxborough, MA 02035 Generator's Phone: (781) 907-3647 ATTN:Susan Brochu Transporter 1 Company Name U.S. FPAID Number Clean Harbors Environmental Services, Inc. MAD039322250 Transporter 2 Company Name U.S. EPA ID Number 8. Designated Facility Name and Site Address U.S. EPA ID Number Clean Harbors El Dorado LLC 309 American Circle El Dorado, AR 71730 ARD069748192 Facility's Phone (870) 863-7173 9b. U.S. DOT Description (including Proper Shipping Name, Hazard Class, ID Number, 10. Containers 11. Total 12. Unit and Packing Group (if any)) HM 13. Waste Codes Quantity No. Type Wt. Not. NON DOT REGULATED MATERIAL, (OILY SOLIDS). 0 GENERATOR MA01 500 0, 14 Special Handling Instructions and Additional Information 4X17H Drums Contract retained by generator confers agency suthority on initial transporter to add or substitute additional transporters on generator's behalf for purposes of transportation efficiency.convenience.or safety 15. GENERATOR'S/OFFEROR'S CERTIFICATION: I hereby declare that the contents of this consignment are fully and accurately described above by the proper shipping name, and are classified, packaged. marked and labeled/placarded, and are in all respects in proper condition for transport according to applicable international and national governmental regulations. If export shipment and I are the Primary Exporter, I certify that the contents of this consignment conform to the terms of the attached EPA Acknowledgment of Consent. I certify that the waste minimization statement identified in 40 CFI 2.27(a) (if I am a large quantity generator) or (b) (if I am a small g & Block Generator's/Offeror's Printed/Typed Name Year Export from U.S. Port of entry/exit: Transporter signature (for exports only): Date leaving U.S. 17. Transporter Acknowledgment of Receipt of Materials Transporter 1 Partid/Typed Name Year 081 21 0 Transporter 2 Printed/Typed Name 18. Discrepancy 18a. Discrepancy Indication Space Type Partial Rejection Full Rejection Residue Manifest Reference Number: U.S EPA ID Number 18b. Alternate Facility (or Generator) Facility's Phone: Month Day Year 18c. Signature of Alternate Facility (or Generator) 19. Hazardous Waste Report Management Method Codes (i.e., codes for hazardous waste treatment, disposal, and recycling systems) H040 Operator: Certification of receipt of hazardous materials covered by the manifest except ted in Item 18a 20. Designated Facility Owner Printed/Typed Name vious editions are posolete. m 8700-22 (Rev. 12-17) Prévious editions are obsolete.

DESIGNATED FACILITY TO EPA's e-MANIFEST SYSTEM
Clean Harbors has the appropriate permits for and will accept the waste the generator is shipping.

DESIGNATED FACILITY TO EPA's e-MANIFEST SYSTEM
SR 21.04589155-004

PPW

APPENDIX G

- 1. This report has been prepared on behalf of and for the exclusive use of the Client and is subject to and issued in accordance with the Agreement and the provisions thereof. Documents provided on this project shall not, in whole or in part, be disseminated or conveyed to any other party, nor used by any other party without the prior written consent of Tighe & Bond. Reuse of documents by Client or others without Tighe & Bond's written permission and mutual agreement shall be at the user's sole risk, without liability on Tighe & Bond's part and Client agrees to indemnify and hold Tighe & Bond harmless from all claims, damages, and expenses, including attorney's fees, arising out of such unauthorized use or reuse.
- 2. Tighe & Bond acknowledges and agrees that, subject to the Limitations set forth herein and prior written approval by Tighe & Bond, this report may be provided to specific financial institutions, attorneys, title insurers, lessees and/or governmental agencies identified by Client at or about the time of issuance of the report in connection with the conveyance, mortgaging, leasing, or similar transaction involving the real property which is the subject matter of a report and any work product. Use of this report for any purpose by any persons, firm, entity, or governmental agency shall be deemed acceptance of the restrictions and conditions contained therein, these Limitations and the provisions of Tighe & Bond's Agreement with Client. No warranty, express or implied, is made by way of Tighe & Bond's performance of services or providing an environmental site assessment, including but not limited to any warranty with the contents of a report or with any and all work product.
- 3. Tighe & Bond performed the subsurface investigation in accordance with our Agreement (including any stated scope and schedule limitations) and used the degree of care and skill ordinarily exercised under similar circumstances by members of the profession practicing in the same or similar locality. The objective of a subsurface investigation is to evaluate the presence or absence of contamination. Where access was denied or conditions obscured, Tighe & Bond provides no opinion or report on such areas. The subsurface investigation may not identify all contaminated media as our scope may be limited to certain locations within a site or due to geologic variability, contamination variability, seasonal conditions, obstructions such as buildings, utilities, or other site features and/or other unknown conditions. Tighe & Bond performed the subsurface investigation using reasonable methods to access and identify the presence of contaminated media. Therefore, additional contaminated media may be present at the site and may be discovered during development and site work, so an appropriate cost contingency should be carried by the Client based on their risk tolerance. Tighe & Bond also makes no opinion or report of contamination that may have migrated off site unless off-site investigations are specifically including in the scope of services.
- 4. Findings, observations, and conclusions presented in this report, including but not limited to the extent of any subsurface explorations or other tests performed by Tighe & Bond, are limited by the scope of services outlined in the Agreement, which may establish schedule and/or budgetary constraints for an environmental assessment or phase thereof. Furthermore, while it is anticipated that each assessment will be performed in accordance with generally accepted professional practices and applicable standards (such as ASTM, etc.) and applicable state and Federal regulations, as may be further described in the report and/or the Agreement, Tighe & Bond does not assume responsibility for the impacts of any changes in environmental standards, practices, or regulations subsequent to performance of its services.

- 5. In preparing this report, Tighe & Bond, Inc. may have relied on certain information provided by governmental agencies or personnel as well as information and/or representations provided by other persons, firms, or entities, and on information in the files of governmental agencies made available to Tighe & Bond at the time of the site assessment. To the extent that such information, representations, or files may be inaccurate, missing, incomplete or not provided to Tighe & Bond, Tighe & Bond is not responsible. Although there may be some degree of overlap in the information provided by these various sources, Tighe & Bond does not assume responsibility for independently verifying the accuracy, authenticity, or completeness of any and all information reviewed by or received from others during the course of the site assessment.
- 6. The assessment presented is based solely upon information obtained or received prior to issuance of the report. If additional environmental or other relevant information is developed at a later date, Client agrees to bring such information to the attention of Tighe & Bond promptly. Upon evaluation of such information, Tighe & Bond reserves the right to recommend modification of this report and its conclusions. In addition, dense forested areas on the site created some visual and access limitations during the site reconnaissance.
- 7. Emerging contaminants, including per- and poly-fluorinated alkyl substances (PFAS), are hazardous materials or mixtures (including naturally occurring or manmade chemical, microbial, or radiological substances) that are characterized by having a perceived or real threat to human health, public safety, or the environment for which there are no published health standards or guidelines and there is insufficient or limited available toxicological information or toxicity information that is evolving or being reevaluated; or there is not significant new source, pathway, or detection limit information. The state of these compounds is constantly being updated and therefore, Tighe & Bond cannot be held liable for not including these compounds in the list of analytes that are analyzed when our services are performed. Unless otherwise specified, Tighe & Bond will only analyze for compounds ordinarily included under similar circumstances by members of the profession practicing in the same or similar locality. Tighe & Bond will not be liable for not including these or any other compounds in the list of target analytes if information regarding their use is not made available by current or former operators/owners at the facility being evaluated. We will also not be liable for not analyzing for the presence of an emerging contaminant, even if that compound is detected at a later date.
- 8. Tighe & Bond makes no guarantee or warranty that this report (if provided to a regulatory agency) will pass a regulatory audit/review. The Licensed Site Professional (LSP), Licensed Environmental Professional (LEP), Professional Geologist (PG), Professional Engineer (PE) or other relevant professional licensure and the applicable regulatory reviewing agency may have differences of opinion on aspects of (and approaches to) the assessment, remediation, risk evaluation or closure and the regulatory agency may request additional information, sampling data, analysis and/or remediation. Such differences of opinion will not be interpreted to imply that Tighe & Bond's services were not performed competently and in accordance with the standard of care. If additional investigations, response action evaluations, or discussions are needed following a regulatory audit/review, Tighe & Bond can provide these services under a separate Agreement.

9. If an Opinion of Probable Construction Costs (OPCC) is provided, Tighe & Bond has no control over the cost or availability of labor, equipment or materials, or over market conditions or the contractor's method of pricing, and that the opinion of probable costs is made on the basis of Tighe & Bond's professional judgment and experience is based on currently available information. Tighe & Bond makes no guarantee nor warranty, expressed or implied, that the actual costs of the construction work will not vary from the OPCC.

APPENDIX H

N5067-084 January 4, 2022

CJW LLC Attn: Christopher Totman 56 Tenth Street Stoughton, Massachusetts 02072

Re: Notification of Environmental Sampling
National Grid – Non-PCB Mineral Oil Dielectric Fluid Release
131 Morse Street
Foxborough, Massachusetts 02035
MassDEP RTN 4-28528

To Mr. Totman:

Tighe & Bond, on behalf of Massachusetts Electric Company d/b/a National Grid (MEC), is hereby notifying you as the listed owner of 131 Morse Street of environmental sampling completed in response to a sudden release of non-polychlorinated biphenyl (Non-PCB) mineral oil dielectric fluid (MODF) from a MEC pad-mounted transformer at your property. This release was reported to the Massachusetts Department of Environmental Protection (MassDEP) on October 4, 2020 and was assigned Release Tracking Number (RTN) 4-28528.

On December 29, 2021, three soil borings were advanced in the vicinity of the former transformer. Each boring was completed as a groundwater monitoring well. On December 29, 2021, Tighe & Bond, on behalf of MEC, collected five soil samples from the three soil borings to evaluate the extent of the MODF release. These soil samples have been submitted for laboratory analysis of extractable petroleum hydrocarbons (EPH) and results are pending. Within 30 days of the laboratory report being issued, you will be provided with a copy of the laboratory report and a Site plan showing the sampling locations.

In addition to the soil samples already collected, Tighe & Bond is planning to collect three groundwater samples, one from each monitoring well, at the Site on January 6, 2022. These groundwater samples will also be submitted for laboratory for analysis of EPH and the results will be provided to you within 30 days of receipt.

Massachusetts Department of Environmental Protection (MassDEP) regulations 310 CMR 40.1403(10) require that written notice be provided within seven days any time environmental samples are collected on behalf of someone other than the property owner. Please note that this letter and the attached MassDEP form are for notification purposes and no action is being asked of you in response to this notice. You will also be provided with notification of any MassDEP reports submitted to document the progress or completion of response activities.

A copy of reports documenting remedial activities and conditions at the Site are available for review online at https://eeaonline.eea.state.ma.us/ - RTN 4-28528, or by contacting Tighe & Bond. Additional public involvement opportunities are available under 310 CMR 40.1403(9).

Should you have any questions, comments or concerns relative to this correspondence, please do not hesitate to contact the undersigned at (401) 455-4306 or (781) 708-9820.

Sincerely,

TIGHE & BOND, INC.

Shelby Miller Marokhovsky Project Environmental Scientist

Enclosures:

BWSC Form 123

John Harvey, LSP

Project Manager

Massachusetts Department of Environmental Protection *Bureau of Waste Site Cleanup*

BWSC123

This Notice is Related to: Release Tracking Number

4	-	28528
---	---	-------

NOTICE OF ENVIRONMENTAL SAMPLING

As required by 310 CMR 40.1403(10) of the Massachusetts Contingency Plan

A. The address of the disposal site related to this Notice and Release Tracking Number (provided above):	
1. Street Address: 131 Morse Street	
City/Town: Foxborough Zip Code: 02035	
B. This notice is being provided to the following party:	
1. Name: Christopher Totman, on behalf of CJW LLC	
2. Street Address: 56 Tenth Street	
City/Town: Stoughton Zip Code: 02072	
C. This notice is being given to inform its recipient (the party listed in Section B):	
1. That environmental sampling will be/has been conducted at property owned by the recipient of this notice.	
2. Of the results of environmental sampling conducted at property owned by the recipient of this notice.	
3. Check to indicate if the analytical results are attached. (If item 2. above is checked, the analytical results from the environmental sampling must be attached to this notice.)	
D. Location of the property where the environmental sampling will be/has been conducted:	
1. Street Address: 131 Morse Street	
City/Town: Foxborough Zip Code: 02035	
2. MCP phase of work during which the sampling will be/has been conducted:	
 ✓ Immediate Response Action ☐ Release Abatement Measure ☐ Utility-related Abatement Measure ☐ Phase IV Remedy Implementation Plan ☐ Phase V/Remedy Operation Status ☐ Phase I Initial Site Investigation ☐ Phase II Comprehensive Site Assessment ☐ Other ☐ (specify) 	
3. Description of property where sampling will be/has been conducted:	
☐residential	
(specify) 4. Description of the sampling locations and types (e.g., soil, groundwater, indoor air, soil gas) to the extent known at the time of this notice.	
Five soil samples from three soil borings were collected for analysis of extractable petroleum hydrocarbon ranges on December 29, 2021. The laboratory results will be provided at a later date. Three groundwater samples, one from each on-Site monitoring well installed during drilling on December 29, 2021, will be collected on January 6, 2022.	
E. Contact information related to the party providing this notice:	
Contact Name: John Harvey (Tighe & Bond, on behalf of National Grid)	

Revised: 5/30/2014 Page 1 of 2

Massachusetts Department of Environmental Protection Bureau of Waste Site Cleanup

BWSC123

This Notice is Related to: Release Tracking Number

4

28528

NOTICE OF ENVIRONMENTAL SAMPLING

As required by 310 CMR 40.1403(10) of the Massachusetts Contingency Plan

MASSACHUSETTS REGULATIONS THAT REQUIRE THIS NOTICE

This notice is being provided pursuant to the Massachusetts Contingency Plan and the notification requirement at 310 CMR 40.1403(10). The Massachusetts Contingency Plan is a state regulation that specifies requirements for parties who are taking actions to address releases of chemicals (oil or hazardous material) to the environment.

THE PERSON(S) PROVIDING THIS NOTICE

This notice has been sent to you by the party who is addressing a release of oil or hazardous material to the environment at the location listed in **Section A** on the reverse side of this form. (The regulations refer to the area where the oil or hazardous material is present as the "disposal site".)

PURPOSE OF THIS NOTICE

When environmental samples are taken as part of an investigation of a release for which a notification to MassDEP has been made under the Massachusetts Contingency Plan (310 CMR 40.0300) on behalf of someone other than the owner of the property, the regulations require that the property owner (listed in **Section B** on the reverse side of this form) be given notice of the environmental sampling. The regulations also require that the property owner subsequently receive the analytical results following the analysis of the environmental samples.

Section C on the reverse side of this form indicates the circumstance under which you are receiving this notice at this time. If you are receiving this notice to inform you of the analytical results following the analysis of the environmental samples, you should also have received, as an attachment, a copy of analytical results. These results should indicate the number and type(s) of samples (e.g., soil, groundwater) analyzed, any chemicals identified, and the measured concentrations of those chemicals.

Section D on the reverse side of this form identifies the property where the environmental sampling will be/has been conducted, provides a description of the sampling locations within the property, and indicates the phase of work under the Massachusetts Contingency Plan regulatory process during which the samples will be/were collected.

FOR MORE INFORMATION

Information about the general process for addressing releases of oil or hazardous material under the Massachusetts Contingency Plan and related public involvement opportunities may be found at http://www.mass.gov/eea/agencies/massdep/cleanup. For more information regarding this notice, you may contact the party listed in **Section E** on the reverse side of this form. Information about the disposal site identified in Section A is also available in files at the Massachusetts Department of Environmental Protection. See http://public.dep.state.ma.us/SearchableSites2/Search.aspx to view site-specific files on-line or http://mass.gov/eea/agencies/massdep/about/contacts/conduct-a-file-review.html if you would like to make an appointment to see these files in person. Please reference the **Release Tracking Number** listed in the upper right hand corner on the reverse side of this form when making file review appointments.

Revised: 5/30/2014 Page 2 of 2

N-5067-084 January 26, 2022

CJW LLC

Attn: Christopher Totman 56 Tenth Street Stoughton, MA 02072

Public Notification of Environmental Sampling Results Re: Mineral Oil Dielectric Fluid Release **131 Morse Street** Foxborough, Massachusetts MassDEP RTN 4-28528

Dear Mr. Totman:

On behalf of Massachusetts Electric Company d/b/a National Grid (MEC), Tighe & Bond is providing this notice of environmental sampling results to you as the owner of record for the referenced property in accordance with 310 CMR 40.1403(10). MEC has been conducting assessment and remediation activities at the property in response to a release of mineral oil dielectric fluid (MODF) from a transformer that was damaged during an electrical fire on October 4, 2020.

On December 29, 2021, Tighe & Bond, on behalf of MEC, collected five soil samples from three soil borings advanced in the vicinity of the former transformer. The soil samples were submitted to a certified laboratory for analysis of extractable petroleum hydrocarbons (EPH) carbon ranges via MassDEP-approved methodology. The laboratory analytical results indicate that levels of EPH carbon ranges are present in two of the boring locations (in three of the five samples), but at concentrations significant below the Massachusetts Department of Environmental Protection (MassDEP) regulatory standards.

In addition, on January 6, 2022, Tighe & Bond, on behalf of MEC, collected three groundwater samples from each of the three groundwater monitoring wells installed within the soil borings on December 29, 2021. The groundwater samples were submitted to a certified laboratory for analysis of EPH carbon ranges via MassDEP-approved methodology. The laboratory analytical results indicate that EPH carbon ranges are not present within groundwater in excess of the applicable laboratory method reporting limits or the MassDEP regulatory standards.

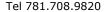
Please note that this letter, the attached MassDEP form, and laboratory analytical reports are for notification purposes only and no action is being asked of you in response to this notice.

A copy of reports documenting remedial activities and conditions at the site are available for review online at https://eeaonline.eea.state.ma.us/portal#!/search/wastesite - Release Tracking Number (RTN) 4-28528. Additionally, public involvement opportunities are available under 310 CMR 40.1403(9) and 310 CMR 40.1404.

If you have any questions regarding this correspondence, please feel free to contact the undersigned at (401) 455-4306 or (781) 375-2572.

J:\N\N5067 National Grid 2020 ER\084 MEC Morse St Foxborough\Public Notifications\Phase I ISI Sampling\Notification of Soil and Groundwater Results.docx

Very truly yours,


TIGHE & BOND, INC.

Shelby Miller Marokhovsky Project Environmental Scientist

Enclosures: **BWSC 123**

Laboratory Reports

Project Manager

(4)

John Harvey, LSP

Massachusetts Department of Environmental Protection *Bureau of Waste Site Cleanup*

BWSC123

This Notice is Related to: Release Tracking Number

4	-	28528
---	---	-------

NOTICE OF ENVIRONMENTAL SAMPLING

As required by 310 CMR 40.1403(10) of the Massachusetts Contingency Plan

A.	A. The address of the disposal site related to this Notice and Release Tracking Number (provided above	/e):	
1.	1. Street Address: 131 Morse Street		
	City/Town: Foxborough Zip Code: 02035		
B. This notice is being provided to the following party:			
1.	1. Name: Christopher Totman, on behalf of CJW LLC		
2.	2. Street Address: 56 Tenth Street		
	City/Town: Stoughton Zip Code: 02072		
C. This notice is being given to inform its recipient (the party listed in Section B):			
	1. That environmental sampling will be/has been conducted at property owned by the recipient of this notice.		
	2. Of the results of environmental sampling conducted at property owned by the recipient of this notice).	
	3. Check to indicate if the analytical results are attached. (If item 2. above is checked, the analytical returns the environmental sampling must be attached to this notice.)	esults from	
D. Location of the property where the environmental sampling will be/has been conducted:			
1. Street Address: 131 Morse Street			
	City/Town: Foxborough Zip Code: 02035		
2.	2. MCP phase of work during which the sampling will be/has been conducted:		
	 ✓ Immediate Response Action ☐ Release Abatement Measure ☐ Utility-related Abatement Measure ☐ Phase IV Remedy Implementation Plan ☐ Phase V/Remedy Operation Status ☐ Phase I Initial Site Investigation ☐ Phase II Comprehensive Site Assessment ☐ Other ☐ (specify) 	Monitoring	
3.	3. Description of property where sampling will be/has been conducted:		
	☐residential		
(specify) 4. Description of the sampling locations and types (e.g., soil, groundwater, indoor air, soil gas) to the extent known at the time of this notice.			
Five soil samples and three groundwater samples were collected in the vicinity of the former transformer area south of the building on your property. Both the soil and groundwater samples were submitted for analysis of EPH carbon ranges.			
E. Contact information related to the party providing this notice:			
Contact Name: John Harvey (Tighe & Bond on behalf of National Grid) One University Avenue, Suite 100			
	Street Address: One University Avenue, Suite 100 City/Town: Westwood Zip Code: 02090		
	City/Town: Westwood Zip Code: 02090 Telephone: (781) 708-9820 Email: jharvey@tighebond.com		
. •			

Revised: 5/30/2014 Page 1 of 2

Massachusetts Department of Environmental Protection Bureau of Waste Site Cleanup

BWSC123

This Notice is Related to: Release Tracking Number

4

28528

NOTICE OF ENVIRONMENTAL SAMPLING

As required by 310 CMR 40.1403(10) of the Massachusetts Contingency Plan

MASSACHUSETTS REGULATIONS THAT REQUIRE THIS NOTICE

This notice is being provided pursuant to the Massachusetts Contingency Plan and the notification requirement at 310 CMR 40.1403(10). The Massachusetts Contingency Plan is a state regulation that specifies requirements for parties who are taking actions to address releases of chemicals (oil or hazardous material) to the environment.

THE PERSON(S) PROVIDING THIS NOTICE

This notice has been sent to you by the party who is addressing a release of oil or hazardous material to the environment at the location listed in **Section A** on the reverse side of this form. (The regulations refer to the area where the oil or hazardous material is present as the "disposal site".)

PURPOSE OF THIS NOTICE

When environmental samples are taken as part of an investigation of a release for which a notification to MassDEP has been made under the Massachusetts Contingency Plan (310 CMR 40.0300) on behalf of someone other than the owner of the property, the regulations require that the property owner (listed in **Section B** on the reverse side of this form) be given notice of the environmental sampling. The regulations also require that the property owner subsequently receive the analytical results following the analysis of the environmental samples.

Section C on the reverse side of this form indicates the circumstance under which you are receiving this notice at this time. If you are receiving this notice to inform you of the analytical results following the analysis of the environmental samples, you should also have received, as an attachment, a copy of analytical results. These results should indicate the number and type(s) of samples (e.g., soil, groundwater) analyzed, any chemicals identified, and the measured concentrations of those chemicals.

Section D on the reverse side of this form identifies the property where the environmental sampling will be/has been conducted, provides a description of the sampling locations within the property, and indicates the phase of work under the Massachusetts Contingency Plan regulatory process during which the samples will be/were collected.

FOR MORE INFORMATION

Information about the general process for addressing releases of oil or hazardous material under the Massachusetts Contingency Plan and related public involvement opportunities may be found at http://www.mass.gov/eea/agencies/massdep/cleanup. For more information regarding this notice, you may contact the party listed in **Section E** on the reverse side of this form. Information about the disposal site identified in Section A is also available in files at the Massachusetts Department of Environmental Protection. See http://public.dep.state.ma.us/SearchableSites2/Search.aspx to view site-specific files on-line or http://mass.gov/eea/agencies/massdep/about/contacts/conduct-a-file-review.html if you would like to make an appointment to see these files in person. Please reference the **Release Tracking Number** listed in the upper right hand corner on the reverse side of this form when making file review appointments.

Revised: 5/30/2014 Page 2 of 2

www.tighebond.com