

February 24, 2022

Hillwood
901 Via Piemonte, Suite 175
Ontario, California 91764

Attention: Mr. John Grace

Project No.: **22G107-2**

Subject: **Results of Infiltration Testing**
Proposed Warehouse
NWC Ethanac Road and Sherman Road
Perris, California

Reference: Geotechnical Investigation, Proposed Warehouse, NWC Ethanac Road and Sherman Road, Perris, California, prepared for Hillwood, by Southern California Geotechnical, Inc. (SCG), SCG Project No. 22G107-1, dated February 23, 2022.

Mr. Grace:

In accordance with your request, we have conducted infiltration testing at the subject site. We are pleased to present this report summarizing the results of the infiltration testing and our design recommendations.

Scope of Services

The scope of services performed for this project was in general accordance with our Proposal No. 21P511, dated December 17, 2021. The scope of services included site reconnaissance, subsurface exploration, field testing, and engineering analysis to determine the infiltration rates of the onsite soils. The infiltration testing was performed in general accordance with ASTM Test Method D-3385-03, Standard Test Method for Infiltration Rate of Soils in Field Using Double Ring Infiltrometer.

Site and Project Description

The subject site is located at the northwest corner of Ethanac Road and Sherman Road in Perris, California. The site is bounded to the north by a commercial/industrial building and a vacant lot, to the west by Trumble Road, to the south by Ethanac Road, and to the east by Sherman Road. The general location of the site is illustrated on the Site Location Map, enclosed as Plate 1 in Appendix A of this report.

The site consists of several contiguous rectangular-shaped parcels which total 24± acres in size. The site is currently vacant and undeveloped. The ground surface cover generally consists of exposed soil with moderate native grass and weed growth. Concrete debris, including concrete fragments and a concrete pipe, is scattered on the ground surface in the southern portion of the site. Several small to medium sized trees are also present in the southern region of the site.

Based on our review of readily available historical aerial photographs, two (2) small structures were present in the southwestern portion of the overall site, between 1966 and 1997.

Detailed topographic information was not available at the time of this report. Based on elevations obtained from Google Earth, and visual observations made at the time of the subsurface investigation, the overall site topography is relatively flat that gently slopes downward to the northwest at a gradient of less than 1 percent.

Proposed Development

A conceptual site plan for the proposed development, identified as Scheme 7, prepared by Herdman Architecture and Design, was provided to our office by the client. Based on this plan, the subject site will be developed with a $547,520\pm$ ft² warehouse, located in the central region of the site. Dock-high doors will be constructed along a portion of the northern and southern building walls. The proposed building is expected to be surrounded by asphaltic concrete pavements in the parking and drive areas, Portland cement concrete pavements in the truck loading areas, and concrete flatwork with some landscaped areas.

The proposed development will include on-site storm water infiltration. Based on conversations with the project civil engineer, we understand that the infiltration system will consist a below-grade chamber system located in the southern area of the site. The bottom of the infiltration system will range from 10 to $12\pm$ feet below the existing site grades.

Concurrent Study

SCG concurrently conducted a geotechnical investigation at the subject site, which is referenced above. As part of this study, eight (8) borings were advanced to depths of 10 to $25\pm$ feet below existing site grades.

Older native alluvial soils were encountered at the ground surface at all of the boring locations, extending to depths of at least $5\frac{1}{2}$ to $25\pm$ feet below ground surface. The older alluvium generally consists of stiff to hard fine sandy clays, fine to coarse sandy clays and medium dense to very dense clayey fine to medium sands. Granodiorite to Tonalite bedrock, map symbol Kdgv, was encountered beneath the older alluvium at Boring Nos. B-1, B-4, B-5, and B-6, at depths of $5\frac{1}{2}$ to $12\pm$ feet below ground surface, extending to the maximum depths explored at each of these borings of 15 to $25\pm$ feet. The bedrock generally consists of medium dense to very dense gray brown, highly weathered, friable, fine- to coarse-grained granodiorite to tonalite.

Groundwater

Free water was not encountered during any of our subsurface explorations. Based on the lack of any water within the borings and the moisture contents of the recovered soil samples, the static groundwater table is considered to have existed at a depth in excess of $25\pm$ feet at the time of the subsurface exploration.

As part of our research, we reviewed readily available groundwater data in order to determine regional groundwater depths. The primary reference used to determine the groundwater depths in the subject site area is the California Department of Water Resources website,

<http://www.water.ca.gov/waterdatalibrary/>. The nearest monitoring well is located approximately 1,320 feet northwest from the site. Water level readings within this monitoring well indicates a high groundwater level of 95.6 feet below the ground surface in September 1995.

Subsurface Exploration

Scope of Exploration

The subsurface exploration for the infiltration testing consisted of two (2) backhoe-excavated trenches, extending to depths of 8 to $9\pm$ feet below existing site grades. The trenches were logged during excavation by a member of our staff. The approximate locations of the infiltration trenches (identified as I-1 and I-2) are indicated on the Infiltration Test Location Plan, enclosed as Plate 2 of this report.

Geotechnical Conditions

Older native alluvial soils were encountered at the ground surface at both of the infiltration test locations, extending to at least the maximum depths explored of 8 to $9\pm$ feet below ground surface. The older alluvium generally consists of very dense clayey fine to medium sands. The Trench Logs, which illustrate the conditions encountered at the infiltration test locations, are presented in this report.

Infiltration Testing

We understand that the results of the testing will be used to prepare a preliminary design for the storm water infiltration system that will be used at the subject site. As previously mentioned, the infiltration testing was performed in general accordance with ASTM Test Method D-3385-03, Standard Test Method for Infiltration Rate of Soils in Field Using Double Ring Infiltrometer.

Two stainless steel infiltration rings were used for the infiltration testing. The outer infiltration ring is 2 feet in diameter and 20 inches in height. The inner infiltration ring is 1 foot in diameter and 20 inches in height. At the test locations, the outer ring was driven $3\pm$ inches into the soil at the base of each trench. The inner ring was centered inside the outer ring and subsequently driven $3\pm$ inches into the soil at the base of the trench. The rings were driven into the soil using a ten-pound sledge hammer. The soil surrounding the wall of the infiltration rings was only slightly disturbed during the driving process.

Infiltration Testing Procedure

Infiltration testing was performed at both of the trench locations. The infiltration testing consisted of filling the inner ring and the annular space (the space between the inner and outer rings) with water, approximately 3 to 4 inches above the soil. To prevent the flow of water from one ring to the other, the water level in both the inner ring and the annular space between the rings was maintained using constant-head float valves. The volume of water that was added to maintain a constant head in the inner ring and the annular space during each time interval was determined and recorded. A cap was placed over the rings to minimize the evaporation of water during the tests.

The schedule for readings was determined based on the observed soil type at the base of each backhoe-excavated trench. Based on the existing soils at the trench locations, the volumetric measurements were made at 15-minute increments. The water volume measurements are presented on the spreadsheets enclosed with this report. The infiltration rates for each of the timed intervals are also tabulated on these spreadsheets.

The infiltration rates for the infiltration tests are calculated in centimeters per hour and then converted to inches per hour. The rates are summarized below:

<u>Infiltration Test No.</u>	<u>Depth (feet)</u>	<u>Soil Description</u>	<u>Infiltration Rate (inches/hour)</u>
I-1	9	Clayey fine to medium Sand, little coarse Sand, little Silt	0.1
I-2	8	Clayey fine to medium Sand, trace coarse Sand, little Silt	0.2

Design Recommendations

Two (2) infiltration tests were performed at the subject site. As noted above, the calculated infiltration rates at the infiltration test locations range from 0.1 to 0.2 inches per hour. The major factors affecting the lack of infiltration at these locations is the presence of dense to very dense older alluvium. **Based on the lack of infiltration at the depths tested, infiltration is not considered feasible for this site. These areas are very likely to be underlain by much less permeable, denser older alluvium, which was encountered at the other boring and trench locations.**

Although infiltration is not considered feasible at the site, the client may desire to use storm water disposal systems that do not rely on infiltration at this site. The design of storm water disposal systems should be performed by the project civil engineer, in accordance with the City of Perris and/or County of Riverside guidelines. It is recommended any such systems be designed and constructed to facilitate removal of silt and clay, or other deleterious materials from any water that may enter the system. The presence of such materials would decrease the flow rates through the system. It should be noted that the recommended infiltration rates are based on infiltration testing at two (2) discrete locations and that the overall infiltration rates of the proposed infiltration systems could vary considerably.

Location of Infiltration Systems

The use of on-site storm water infiltration systems carries a risk of creating adverse geotechnical conditions. Increasing the moisture content of the soil can cause the soil to lose internal shear strength and increase its compressibility, resulting in a change in the designed engineering properties. Overlying structures and pavements in the infiltration area could potentially be damaged due to saturation of the subgrade soils. **The proposed infiltration systems for this site should be located at least 25 feet away from any structures, including retaining walls.** Even with this provision of locating the infiltration system at least 25 feet from the building(s), it is possible that infiltrating water into the subsurface soils could have an adverse effect on the proposed or existing structures. It should also be noted that utility trenches which happen to collect storm water can also serve as conduits to transmit storm water toward the

structure, depending on the slope of the utility trench. Therefore, consideration should also be given to the proposed locations of underground utilities which may pass near the proposed infiltration system.

The infiltration system designer should also give special consideration to the effect that the proposed infiltration systems may have on nearby subterranean structures, open excavations, or descending slopes. In particular, infiltration systems should not be located near the crest of descending slopes, particularly where the slopes are comprised of granular soils. Such systems will require specialized design and analysis to evaluate the potential for slope instability, piping failures and other phenomena that typically apply to earthen dam design. This type of analysis is beyond the scope of this infiltration test report, but these factors should be considered by the infiltration system designer when locating the infiltration systems.

General Comments

This report has been prepared as an instrument of service for use by the client in order to aid in the evaluation of this property and to assist the architects and engineers in the design and preparation of the project plans and specifications. This report may be provided to the contractor(s) and other design consultants to disclose information relative to the project. However, this report is not intended to be utilized as a specification in and of itself, without appropriate interpretation by the project architect, structural engineer, and/or civil engineer. The design of the proposed storm water infiltration system is the responsibility of the civil engineer. The role of the geotechnical engineer is limited to determination of infiltration rate only. By using the design infiltration rate contained herein, the civil engineer agrees to indemnify, defend, and hold harmless the geotechnical engineer for all aspects of the design and performance of the proposed storm water infiltration system. The reproduction and distribution of this report must be authorized by the client and Southern California Geotechnical, Inc. Furthermore, any reliance on this report by an unauthorized third party is at such party's sole risk, and we accept no responsibility for damage or loss which may occur.

The analysis of this site was based on a subsurface profile interpolated from limited discrete soil samples. While the materials encountered in the project area are considered to be representative of the total area, some variations should be expected between boring locations and testing depths. If the conditions encountered during construction vary significantly from those detailed herein, we should be contacted immediately to determine if the conditions alter the recommendations contained herein.

This report has been based on assumed or provided characteristics of the proposed development. It is recommended that the owner, client, architect, structural engineer, and civil engineer carefully review these assumptions to ensure that they are consistent with the characteristics of the proposed development. If discrepancies exist, they should be brought to our attention to verify that they do not affect the conclusions and recommendations contained herein. We also recommend that the project plans and specifications be submitted to our office for review to verify that our recommendations have been correctly interpreted. The analysis, conclusions, and recommendations contained within this report have been promulgated in accordance with

generally accepted professional geotechnical engineering practice. No other warranty is implied or expressed.

Closure

We sincerely appreciate the opportunity to be of service on this project. We look forward to providing additional consulting services during the course of the project. If we may be of further assistance in any manner, please contact our office.

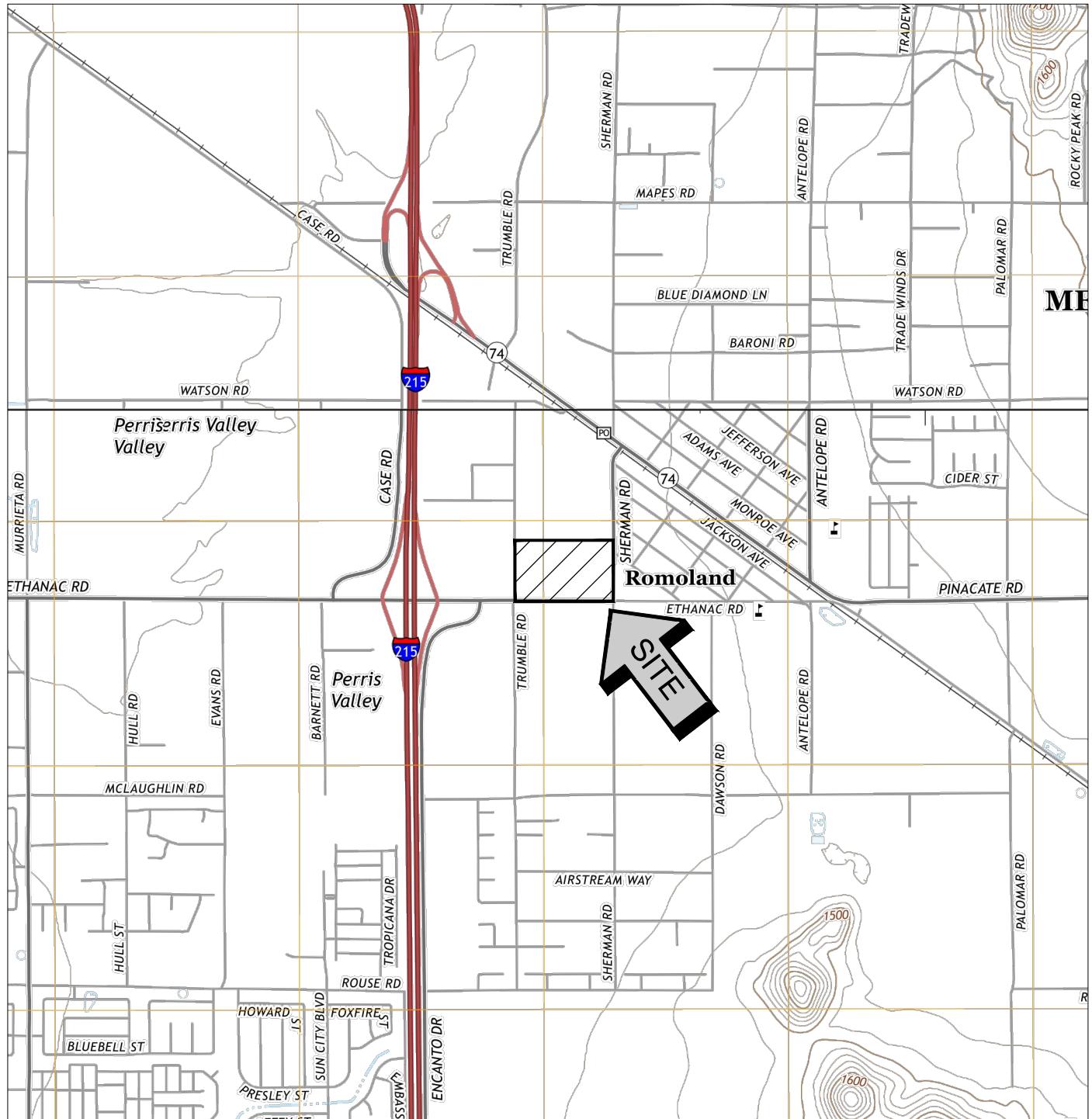
Respectfully Submitted,

SOUTHERN CALIFORNIA GEOTECHNICAL, INC.

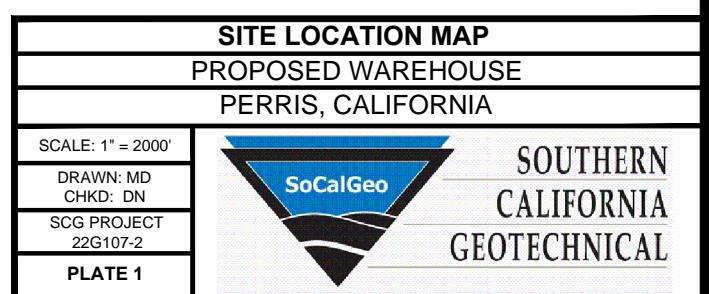
Oscar Sandoval
Staff Engineer

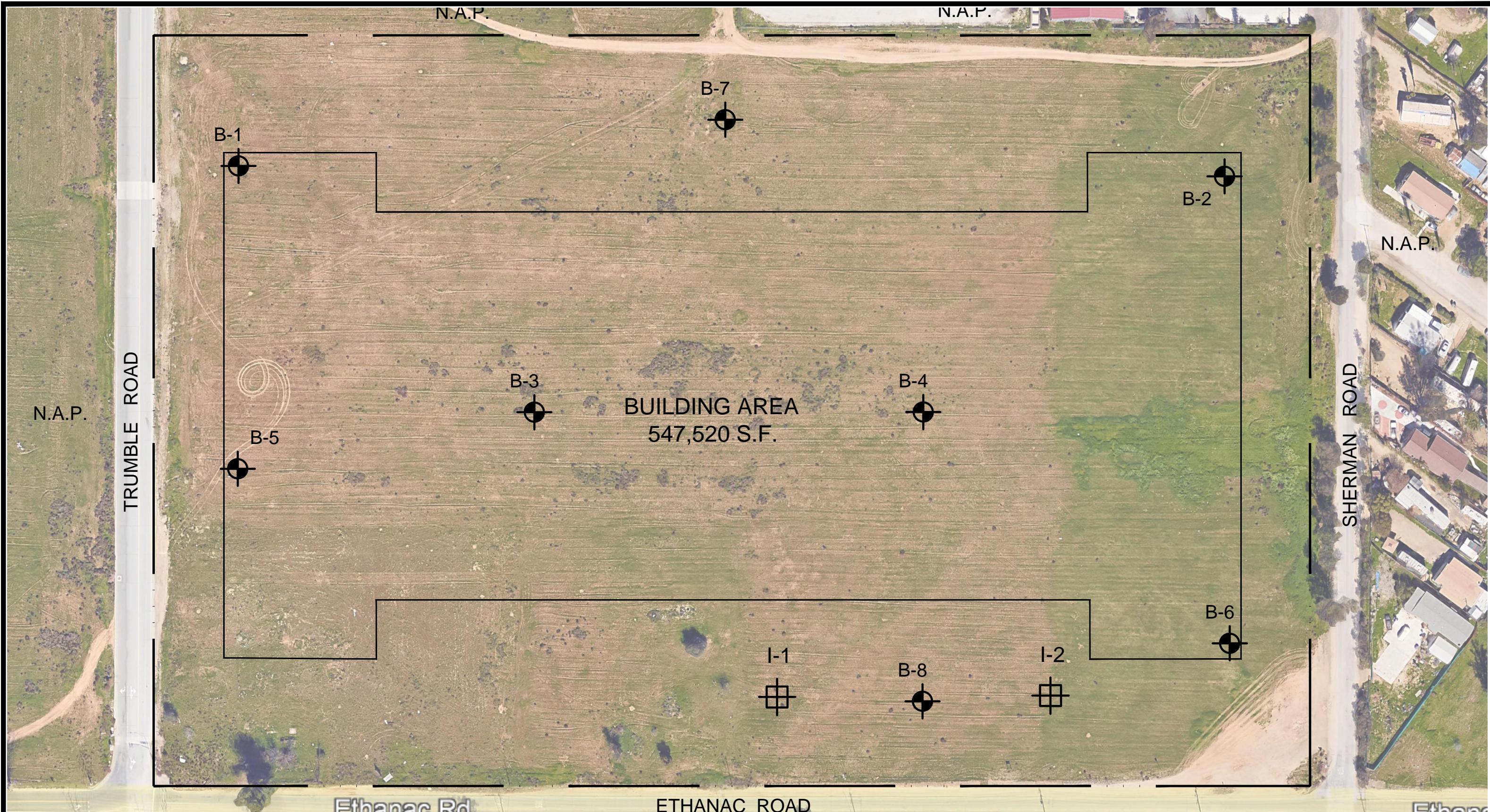
Robert G. Trazo, GE 2655
Principal Engineer

Distribution: (1) Addressee



Enclosures: Plate 1: Site Location Map
Plate 2: Infiltration Test Location Plan
Trench Log Legend and Logs (4 pages)
Infiltration Test Results Spreadsheets (2 pages)
Grainsize Distribution Graphs (2 pages)




SOUTHERN
CALIFORNIA
GEOTECHNICAL

Proposed Warehouse – Perris, CA
Project No. 22G107-2
Page 6

SOURCE: USGS TOPOGRAPHIC MAP OF THE
ROMOLAND & PERRIS QUADRANGLES, RIVERSIDE
COUNTY, CALIFORNIA, 2018.

GEOTECHNICAL LEGEND

- APPROXIMATE INFILTRATION TEST LOCATION
- APPROXIMATE BORING LOCATION

NOTE: CONCEPTUAL SITE PLAN (SCHEME 7) PREPARED BY HERDMAN
ARCHITECTURE + DESIGN.
AERIAL PHOTOGRAPH OBTAINED FROM GOOGLE EARTH (2018)

INFILTRATION TEST LOCATION PLAN	
PROPOSED WAREHOUSE	
PERRIS, CALIFORNIA	
SCALE: 1" = 100'	
DRAWN: OS	
CHKD: RGT	
SCG PROJECT	
22G107-2	
PLATE 2	

SOUTHERN
CALIFORNIA
GEOTECHNICAL

TRENCH LOG LEGEND

SAMPLE TYPE	GRAPHICAL SYMBOL	SAMPLE DESCRIPTION
AUGER		SAMPLE COLLECTED FROM AUGER CUTTINGS, NO FIELD MEASUREMENT OF SOIL STRENGTH. (DISTURBED)
CORE		ROCK CORE SAMPLE: TYPICALLY TAKEN WITH A DIAMOND-TIPPED CORE BARREL. TYPICALLY USED ONLY IN HIGHLY CONSOLIDATED BEDROCK.
GRAB		SOIL SAMPLE TAKEN WITH NO SPECIALIZED EQUIPMENT, SUCH AS FROM A STOCKPILE OR THE GROUND SURFACE. (DISTURBED)
CS		CALIFORNIA SAMPLER: 2-1/2 INCH I.D. SPLIT BARREL SAMPLER, LINED WITH 1-INCH HIGH BRASS RINGS. DRIVEN WITH SPT HAMMER. (RELATIVELY UNDISTURBED)
NSR		NO RECOVERY: THE SAMPLING ATTEMPT DID NOT RESULT IN RECOVERY OF ANY SIGNIFICANT SOIL OR ROCK MATERIAL.
SPT		STANDARD PENETRATION TEST: SAMPLER IS A 1.4 INCH INSIDE DIAMETER SPLIT BARREL, DRIVEN 18 INCHES WITH THE SPT HAMMER. (DISTURBED)
SH		SHELBY TUBE: TAKEN WITH A THIN WALL SAMPLE TUBE, PUSHED INTO THE SOIL AND THEN EXTRACTED. (UNDISTURBED)
VANE		VANE SHEAR TEST: SOIL STRENGTH OBTAINED USING A 4 BLADED SHEAR DEVICE. TYPICALLY USED IN SOFT CLAYS-NO SAMPLE RECOVERED.

COLUMN DESCRIPTIONS

DEPTH:

Distance in feet below the ground surface.

SAMPLE:

Sample Type as depicted above.

BLOW COUNT:

Number of blows required to advance the sampler 12 inches using a 140 lb hammer with a 30-inch drop. 50/3" indicates penetration refusal (>50 blows) at 3 inches. WH indicates that the weight of the hammer was sufficient to push the sampler 6 inches or more.

POCKET PEN.:

Approximate shear strength of a cohesive soil sample as measured by pocket penetrometer.

GRAPHIC LOG:

Graphic Soil Symbol as depicted on the following page.

DRY DENSITY:

Dry density of an undisturbed or relatively undisturbed sample in lbs/ft³.

MOISTURE CONTENT:

Moisture content of a soil sample, expressed as a percentage of the dry weight.

LIQUID LIMIT:

The moisture content above which a soil behaves as a liquid.

PLASTIC LIMIT:

The moisture content above which a soil behaves as a plastic.

PASSING #200 SIEVE:

The percentage of the sample finer than the #200 standard sieve.

UNCONFINED SHEAR:

The shear strength of a cohesive soil sample, as measured in the unconfined state.

SOIL CLASSIFICATION CHART

MAJOR DIVISIONS			SYMBOLS		TYPICAL DESCRIPTIONS
			GRAPH	LETTER	
COARSE GRAINED SOILS MORE THAN 50% OF MATERIAL IS LARGER THAN NO. 200 SIEVE SIZE	GRAVEL AND GRAVELLY SOILS MORE THAN 50% OF COARSE FRACTION RETAINED ON NO. 4 SIEVE	CLEAN GRAVELS (LITTLE OR NO FINES)		GW	WELL-GRADED GRAVELS, GRAVEL - SAND MIXTURES, LITTLE OR NO FINES
		GRAVELS WITH FINES (APPRECIABLE AMOUNT OF FINES)		GP	Poorly-graded gravels, gravel - sand mixtures, little or no fines
				GM	SILTY GRAVELS, GRAVEL - SAND - SILT MIXTURES
				GC	CLAYEY GRAVELS, GRAVEL - SAND - CLAY MIXTURES
	SAND AND SANDY SOILS MORE THAN 50% OF COARSE FRACTION PASSING ON NO. 4 SIEVE	CLEAN SANDS (LITTLE OR NO FINES)		SW	WELL-GRADED SANDS, GRAVELLY SANDS, LITTLE OR NO FINES
				SP	Poorly-graded sands, gravelly sand, little or no fines
		SANDS WITH FINES (APPRECIABLE AMOUNT OF FINES)		SM	SILTY SANDS, SAND - SILT MIXTURES
				SC	CLAYEY SANDS, SAND - CLAY MIXTURES
FINE GRAINED SOILS MORE THAN 50% OF MATERIAL IS SMALLER THAN NO. 200 SIEVE SIZE	SILTS AND CLAYS LIQUID LIMIT LESS THAN 50			ML	INORGANIC SILTS AND VERY FINE SANDS, ROCK FLOUR, SILTY OR CLAYEY FINE SANDS OR CLAYEY SILTS WITH SLIGHT PLASTICITY
				CL	INORGANIC CLAYS OF LOW TO MEDIUM PLASTICITY, GRAVELLY CLAYS, SANDY CLAYS, SILTY CLAYS, LEAN CLAYS
				OL	ORGANIC SILTS AND ORGANIC SILTY CLAYS OF LOW PLASTICITY
				MH	INORGANIC SILTS, MICACEOUS OR DIATOMACEOUS FINE SAND OR SILTY SOILS
	SILTS AND CLAYS LIQUID LIMIT GREATER THAN 50			CH	INORGANIC CLAYS OF HIGH PLASTICITY
				OH	ORGANIC CLAYS OF MEDIUM TO HIGH PLASTICITY, ORGANIC SILTS
				PT	PEAT, HUMUS, SWAMP SOILS WITH HIGH ORGANIC CONTENTS
		HIGHLY ORGANIC SOILS			

NOTE: DUAL SYMBOLS ARE USED TO INDICATE BORDERLINE SOIL CLASSIFICATIONS

FIELD RESULTS				GRAPHIC LOG	DESCRIPTION	LABORATORY RESULTS				COMMENTS
DEPTH (FEET)	SAMPLE	BLOW COUNT	POCKET PEN. (TSF)			DRY DENSITY (PCF)	MOISTURE CONTENT (%)	LIQUID LIMIT	PLASTIC LIMIT	
5					<p><u>OLDER ALLUVIUM:</u> Light Brown Clayey fine to medium Sand, little Silt, little coarse Sand, trace Calcareous veining, cemented, slightly porous, very dense-damp to moist</p>	11			29	
					Trench Terminated at 9' Due to Refusal on Very Dense Soils					

FIELD RESULTS				GRAPHIC LOG	DESCRIPTION	LABORATORY RESULTS				COMMENTS
DEPTH (FEET)	SAMPLE	BLOW COUNT	POCKET PEN. (TSF)			DRY DENSITY (PCF)	MOISTURE CONTENT (%)	LIQUID LIMIT	PLASTIC LIMIT	
5					<p><u>OLDER ALLUVIUM:</u> Light Brown Clayey fine to medium Sand, little Silt, trace coarse Sand, cemented, slightly porous, very dense-damp to moist</p> <p>SURFACE ELEVATION: MSL</p>	10			26	
					Trench Terminated at 8' Due to Refusal on Very Dense Soils					

INFILTRATION CALCULATIONS

Project Name	Proposed Warehouse
Project Location	Perris, CA
Project Number	22G107-2
Engineer	CB

Infiltration Test No

I-1

<u>Constants</u>			
	Diameter (ft)	Area (ft ²)	Area (cm ²)
Inner	1	0.79	730
Anlr. Spac	2	2.36	2189

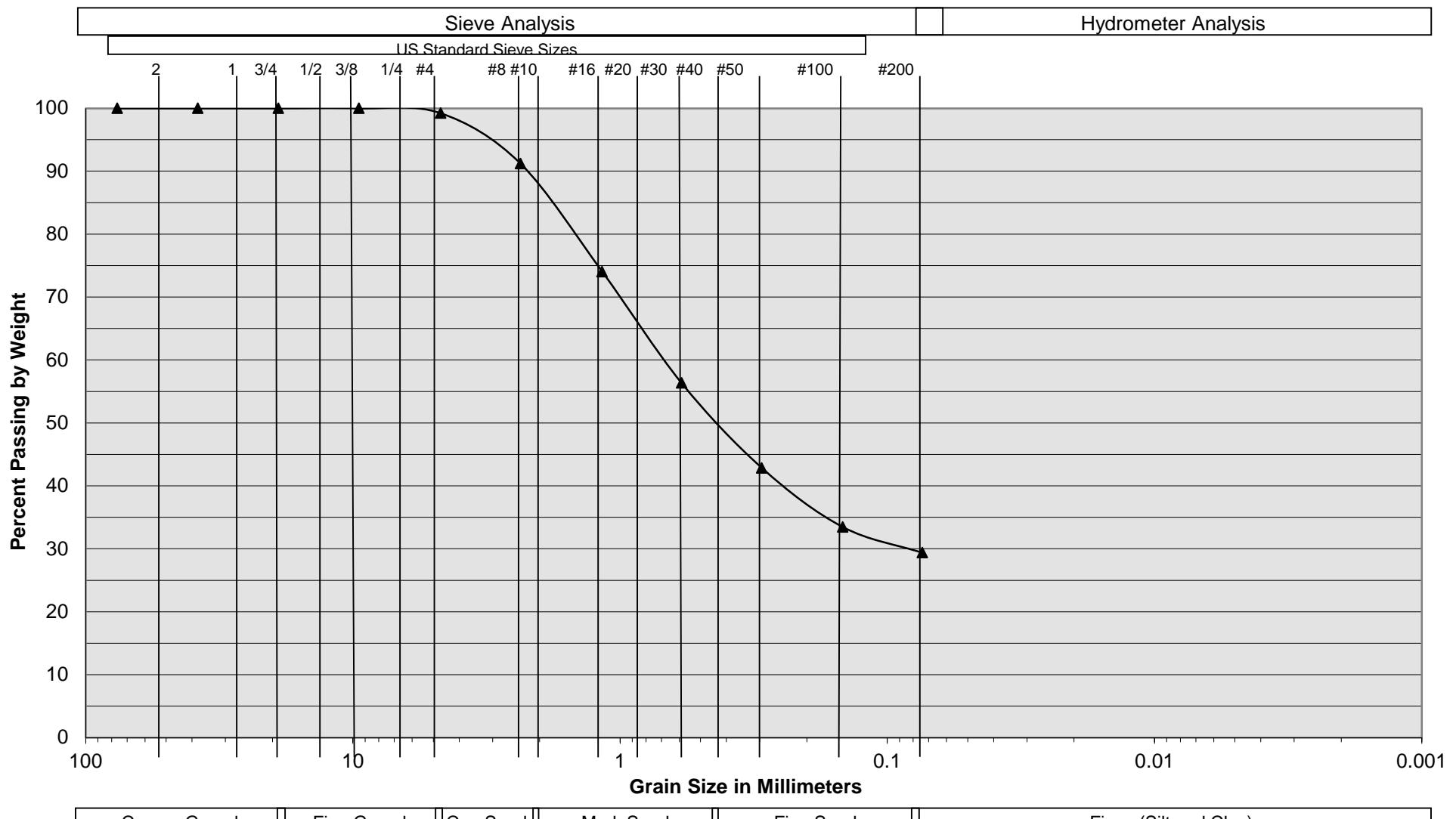
*Note: The infiltration rate was calculated based on current time interval

Test Interval		Time (hr)	Interval Elapsed (min)	Flow Readings				Infiltration Rates			
				Inner Ring (ml)	Ring Flow (cm ³)	Annular Ring (ml)	Space Flow (cm ³)	Inner Ring* (cm/hr)	Annular Space* (cm/hr)	Inner Ring* (in/hr)	Annular Space* (in/hr)
1	Initial	9:20 AM	15	0	100	0	8000	0.55	14.62	0.22	5.76
	Final	9:35 AM	15	100		8000					
2	Initial	9:35 AM	15	0	0	8	5792	0.00	10.58	0.00	4.17
	Final	9:50 AM	30	0		5800					
3	Initial	9:50 AM	15	0	0	0	3900	0.00	7.13	0.00	2.81
	Final	10:05 AM	45	0		3900					
4	Initial	10:05 AM	15	0	0	0	3500	0.00	6.40	0.00	2.52
	Final	10:20 AM	60	0		3500					
5	Initial	10:20 AM	15	0	100	0	3600	0.55	6.58	0.22	2.59
	Final	10:35 AM	75	100		3600					
6	Initial	10:35 AM	15	0	50	0	3600	0.27	6.58	0.11	2.59
	Final	10:50 AM	90	50		3600					
7	Initial	10:50 AM	15	0	50	0	3600	0.27	6.58	0.11	2.59
	Final	11:05 AM	105	50		3600					
8	Initial	11:05 AM	15	0	50	0	3600	0.27	6.58	0.11	2.59
	Final	11:20 AM	120	50		3600					

INFILTRATION CALCULATIONS

Project Name	Proposed Warehouse
Project Location	Perris, CA
Project Number	22G107-2
Engineer	CB

Infiltration Test No


I-2

<u>Constants</u>			
	Diameter (ft)	Area (ft ²)	Area (cm ²)
Inner	1	0.79	730
Anlr. Spac	2	2.36	2189

*Note: The infiltration rate was calculated based on current time interval

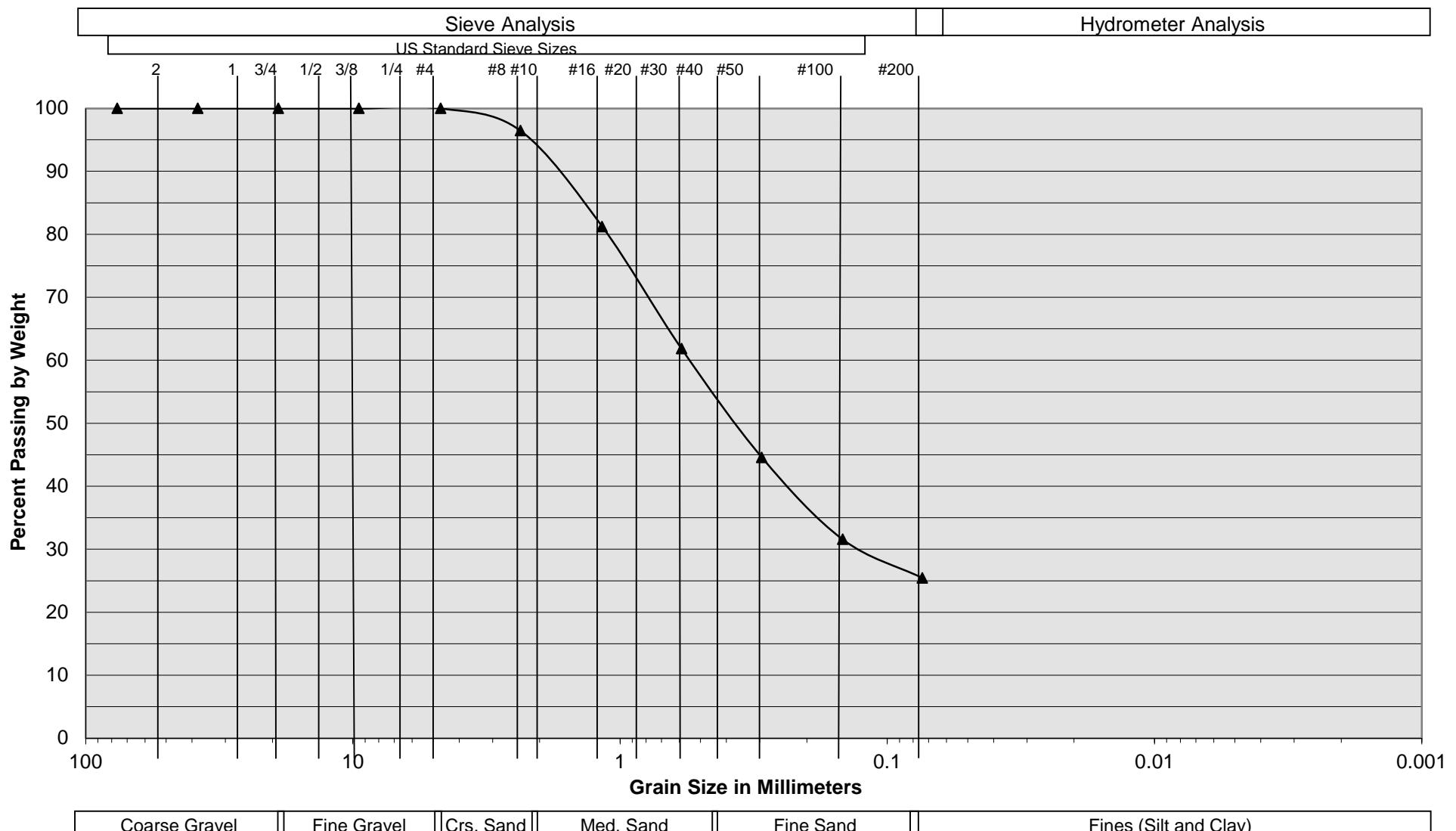
Test Interval		Time (hr)	Interval Elapsed (min)	Flow Readings				Infiltration Rates			
				Inner Ring (ml)	Ring Flow (cm ³)	Annular Ring (ml)	Space Flow (cm ³)	Inner Ring* (cm/hr)	Annular Space* (cm/hr)	Inner Ring* (in/hr)	Annular Space* (in/hr)
1	Initial	7:00 AM	15	0	200	0	3500	1.10	6.40	0.43	2.52
	Final	7:15 AM	15	200		3500					
2	Initial	7:15 AM	15	0	150	0	4200	0.82	7.68	0.32	3.02
	Final	7:30 AM	30	150		4200					
3	Initial	7:30 AM	15	0	150	0	3000	0.82	5.48	0.32	2.16
	Final	7:45 AM	45	150		3000					
4	Initial	7:45 AM	15	0	100	0	2900	0.55	5.30	0.22	2.09
	Final	8:00 AM	60	100		2900					
5	Initial	8:00 AM	15	0	150	0	2900	0.82	5.30	0.32	2.09
	Final	8:15 AM	75	150		2900					
6	Initial	8:15 AM	15	0	100	0	2800	0.55	5.12	0.22	2.01
	Final	8:30 AM	90	100		2800					
7	Initial	8:30 AM	15	0	100	0	2900	0.55	5.30	0.22	2.09
	Final	8:45 AM	105	100		2900					
8	Initial	8:45 AM	15	0	100	0	2800	0.55	5.12	0.22	2.01
	Final	9:00 AM	120	100		2800					

Grain Size Distribution

Sample Description

I-1 @ 8'

Soil Classification


Light Brown Clayey fine to medium Sand, little coarse Sand, little Silt

Proposed Warehouse
Perris, CA
Project No. 22G107-2
PLATE C- 1

SOUTHERN
CALIFORNIA
GEOTECHNICAL
A California Corporation

Grain Size Distribution

Sample Description

I-2 @ 7'

Soil Classification

Light Brown Clayey fine to medium Sand, trace coarse Sand, little Silt

Proposed Warehouse
Perris, CA

Project No. 22G107-2

PLATE C- 2

SOUTHERN
CALIFORNIA
GEOTECHNICAL
A California Corporation