CONSTRUCTION PLANS FOR DRAINAGE IMPROVEMENTS FOR WILLOW PARK OFFICE CONDOMINIUMS

AT FM 2920

LOCATED IN

SPRING WEST M.U.D.

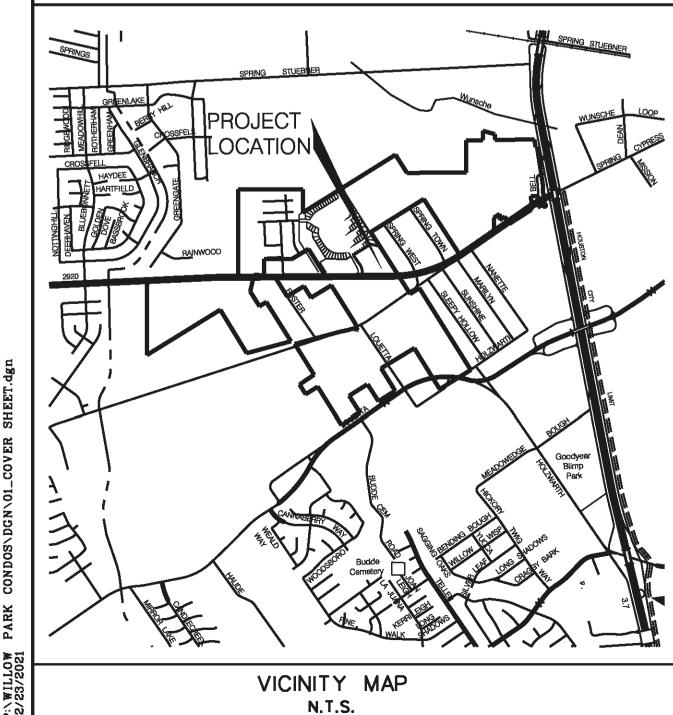
IN
HARRIS COUNTY, TEXAS

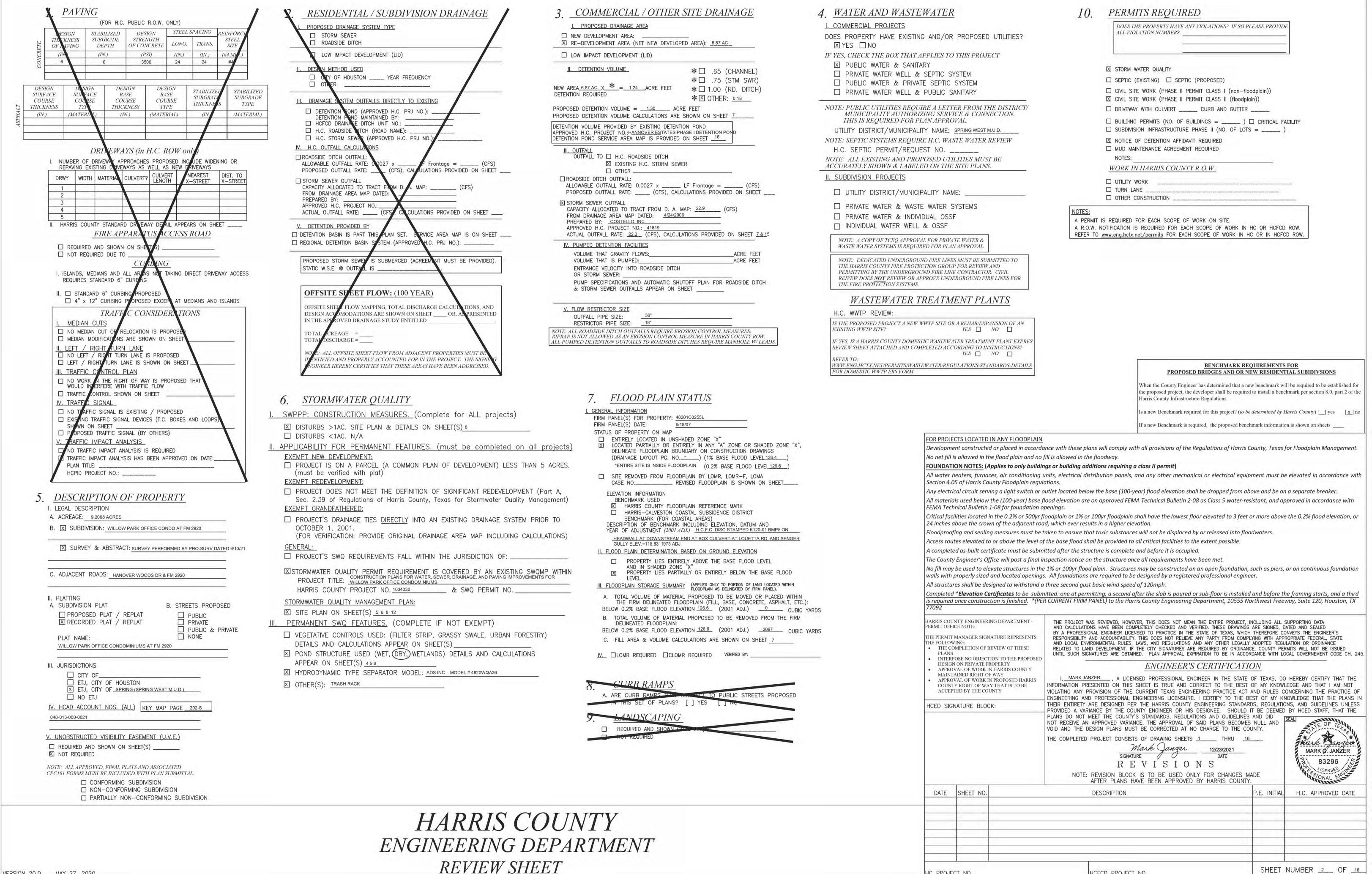
INDEX OF DRAWINGS

SHEET NO. DESCRIPTION

LAYOUT SHEETS

1	COVER SHEET
2	HARRIS COUNTY EXPRESS REVIEW SHEET
3	CONSTRUCTION NOTES
4	TOPOGRAPHIC & SURVEY
5	DRAINAGE LAYOUT
6	DETENTION POND LAYOUT
7	DRAINAGE CALCULATIONS
8	STORM WATER POLLUTION PREVENTION PLAN LAYOUT
9	DRAINAGE DETAILS
10	STORM WATER POLLUTION PREVENTION PLAN DETAILS
11	REFERENCE 1: WILLOW PARK CONDOMINIUMS HARRIS COUNTY REVIEW SHE
12	REFERENCE 2: WILLOW PARK CONDOMINIUMS DRAINAGE LAYOUT
13	REFERENCE 3: WILLOW PARK CONDOMINIUMS CALCULATIONS
14	REFERENCE 4: WILLOW PARK CONDOMINIUMS WATER & SANITARY LAYOUT
15	REFERENCE 5: SPRING WEST MUD OFFSITE STORM SEWER LINE
16	REFERENCE 6: HANNOVER ESTATES PHASE I DETENTION POND





SHEET 1 OF 16

JOB NO. 2021271

MAP REF: HARRIS COUNTY KEY MAP PG, 292 SQ. "S"

HC PROJECT NO.

HCFCD PROJECT NO.

SHEET NUMBER 2 OF 16

VERSION 20.0 MAY 27, 2020

GENERAL CONSTRUCTION NOTES

- IT IS THE INTENT OF THE CONTRACT DOCUMENTS TO BE CONSISTENT IN THEIR ELEMENTS TO DESCRIBE AND PROVIDE FOR A COMPLETE PROJECT. IN THE EVENT OF A CONFLICT BETWEEN THE CONSTRUCTION PLANS AND THE TECHNICAL SPECIFICATIONS. TECHNICAL SPECIFICATION SECTION 02200 SHALL SUPERCEDE THE CONSTRUCTION PLANS WITH THE EXCEPTION THAT 2 1/2 SACK PER CUBIC YARD CEMENT STABILIZED SAND MIXTURE WILL ALWAYS BE REQUIRED FOR BACKFILL BETWEEN WATER AND SANITARY CROSSINGS AS IS INDICATED ON SHEET C-11. IN THE EVENT OF A CONFLICT BETWEEN THE CONSTRUCTION PLANS AND ANY TECHNICAL SPECIFICATION OTHER THAN TECHNICAL SPECIFICATION SECTION 02200. THE CONSTRUCTION PLANS SHALL SUPERCEDE THE TECHNICAL SPECIFICATIONS. IN ALL SITUATIONS WHERE SPECIAL PROVISIONS ARE INDICATED IN THE TECHNICAL SPECIFICATION. THE SPECIAL PROVISION WILL SUPERCEDE THE TECHNICAL SPECIFICATIONS.
- THE CONTRACTOR SHALL CONTACT THE OWNER'S REPRESENTATIVES. AND THE THE APPROPRIATE CITY OF HOUSTON DEPARTMENTS 48-HOURS PRIOR TO THE START OF ANY CONSTRUCTION. THE CONTRACTOR SHALL FURNISH APPROPRIATE TEST DATA TO THE GEOTECHNICAL ENGINEER FOR ANY REQUIRED BORROW SOURCE BEFORE MOBILIZING TO THE SITE.
- JT IS THE RESPONSIBLITY OF THE CONTRACTOR TO ARRANGE FOR THE PURCHASE OF ANY CONSTRUCTION WATER. ANY CONSTRUCTION WATER ANY CONSTRUCTION WATER REQUIRED ON SITE SHALL BE METERED IN A MANNER APPROPRIATE TO ALLOW THE CITY OF HOUSTON TO BILL FOR THAT WATER USE. THE CONTRACTOR SHALL NOT OPERATE ANY EXISTING GATE VALVES ON PUBLIC WATER LINES (UNLESS NECESSITATED BY EMERGENCY). THE OPERATION OF THE PUBLIC WATER SYSTEM MUST BE BY THE CITY OF HOUSTON.
- 4. ALL UNSATISFACTORY AND/OR WASTE MATERIALS INCLUDING VEGETATION, ROOTS, STRIPPINGS, CONCRETE, AND DEBRIS SHALL BE HAULED OFF SITE BY THE CONTRACTOR. TREES AND BRUSH ARE NOT INDICATED ON THE CONSTRUCTION PLANS. IT IS THE RESPONSIBILITY OF THE CONTRACTOR TO VISIT THE SITE AND DETERMINE THE EXTENT OF ANY TREE/BRUSH REMOVAL REOUIRED. UNLESS DESIGNATED TO REMAIN ON EITHER THE CIVIL DRAWINGS OR THE LANDSCAPE DRAWINGS, ALL TREES, ROOTS AND HEAVY BRUSH MUST BE REMOVED FROM THE PROJECT SITE.
- THE CONTRACTOR SHALL MAINTAIN ADEQUATE DRAINAGE AT ALL TIMES DURING CONSTRUCTION OF PROPOSED FACILITIES. THE CONTRACTOR SHALL SUBMIT A DRAINAGE PLAN SHOWING PROPOSED DITCHES, SUMPS AND PUMPS THROUGHOUT THE PROJECT. AS SITE PREPARATION IS UNDERWAY, SUBGRADES SHALL BE SLOPED TO DRAIN AND THE SUBGRADES SHALL BE SEALED BY COMPACTING WITH A RUBBER TIRE ROLLER AT THE END OF EACH DAY OR WHEN RAIN IS IMMINENT.
- 6. ALL EXISTING UTILITIES MAY NOT BE INDICATED. THE CONTRACTOR SHALL VERIFY LOCATION AND ELEVATION OF EXISTING FACILITIES PRIOR TO CONSTRUCTION OF PROPOSED FACILITIES. THE CONTRACTOR SHALL NOTIFY UTILITIES 48 HOURS PRIOR TO COMMENCEMENT OF CONSTRUCTION. CONTACT TEXAS ONE-CALL 713-223-4567. THE CONTRACTOR SHALL FAMILIARIZE HIMSELF WITH THE DEPTHS OF ALL EXISTING UTILITY LINES ON THE PROJECT. DO NOT DAMAGE EXISTING OR NEW UTILITY LINES. ANY DAMAGE TO THESE LINES AS A RESULT OF CONSTRUCTION WILL BE REPAIRED BY THE CONTRACTOR AT HIS EXPENSE AND TO THE APPROVAL OF THE OWNER. THIS NOTE INCLUDES IRRIGATION LINES WITHIN THE RIGHT-OF-WAY.
 - ALL EXISTING IRRIGATION LOCATED IN THE STREET RIGHT-OF-WAY WHICH IS DAMAGED. SHALL BE REPAIRED BY THE CONTRACTOR.
- ALL EXISTING LANDSCAPING. SIDEWALKS. FENCES. UTILITIES AND OTHER EXISTING FACILITIES WHICH SHALL REMAIN AND ARE DAMAGED DURING CONSTRUCTION WILL BE REPLACED OR REPAIRED TO THEIR ORIGINAL CONDITION BY THE CONTRACTOR AT HIS EXPENSE.
- 8. ALL WORK SHALL BE COMPLETED TO THE SATISFACTION OF THE OWNER.
- THE CONTRACTOR SHALL CONFINE ALL WORK WITHIN THE DESIGNATED AREA (BOUNDARY AND EASEMENTS SHOWN ON PLANS) UNLESS SPECIFICALLY AUTHORIZED BY OWNER. EXTREME CARE SHOULD BE EXERCISED NEAR ADJACENT PROPERTY TO PROTECT ANY EXISTING TREES AND PROPERTY.
- 10. ALL CONSTRUCTION WHICH HINDERS TRAFFIC OR REQUIRES TRAFFIC DIVERSION SHALL BE IN ACCORDANCE WITH THE LATEST EDITION OF THE TEXAS MANUAL ON UNIFORM TRAFFIC CONTROL DEVICES. THE CONTRACTOR WILL BE REQUIRED TO PREPARE, SUBMIT AND OBTAIN CITY OF HOUSTON APPROVAL OF A TRAFFIC CONTROL PLAN FOR THE WORK PERFORMED WITHIN CITY OF HOUSTON RIGHT-OF-WAY.
 - WORK WITHIN THE TXDOT RIGHT-OF-WAY SHALL NOT COMMENCE UNTIL THIS PHASE OF WORK IS SPECIFICALLY AUTHORIZED BY THE OWNER. WORK IN THE TXDOT RIGHT-OF-WAY WILL BE DELAYED UNTIL RECEIPT OF THE PERMIT FROM TXDOT. THE CONTRACTOR SHALL COMPLY WITH ALL REQUIREMENTS OF THE TXDOT PERMIT.
- 11. IT IS THE RESPONSIBILITY OF THE CONTRACTOR TO ALIGN THE GRATE TOPS HORIZONTALLY TO CONFORM TO THE PROPOSED PARKING ROWS AS INDICATED ON THE DRAWINGS.
- 12. MAINTAIN A MINIMUM OF 6-INCH CLEARANCE BETWEEN ALL UTILITIES UNLESS OTHERWISE INDICATED ON THE CONSTRUCTION PLANS.
- 13. PRIOR TO COMMENCING WORK IN ANY AREA. THE CONTRACTOR SHALL
 MOW AND STRIP THE VEGETATION IN ALL AREAS WHERE WORK IS TO BE
 PERFORMED. OR IN ANY LOCATION WHERE CONSTRUCTION MACHINES OR
 TRUCKS ARE TO BE OPERATING. ALL AREAS PROPOSED TO BE DISTURBED
 IN ANY FASHION ARE TO BE STRIPPED. STRIPPING IS DEFINED AS REMOVING
 ALL GRASS AND THE ORGANIC ZONE (A MINIMUM OF 4-INCHES).
- 14. THE CONTRACTOR SHALL EXECUTE THE REQUIRED POLLUTION PREVENTION PLAN (PPP) AND ASSOCIATED NOTICE OF INTENT (NO!) FORM FOR THIS PROJECT AND SHALL BE RESPONSIBLE FOR CONSTRUCTING AND MAINTAINING ALL ITEMS IDENTIFIED IN THE PPP UNTIL THIS PROJECT IS SUBSTANTIALLY COMPLETE. THE CONTRACTOR SHALL PREPARE WEEKLY INSPECTION REPORTS AS REQUIRED BY THE PPP.
- 15. CONTRACTOR IS TO OBTAIN ALL REQUIRED CITY OF HOUSTON PERMITS PRIOR TO START OF CONSTRUCTION.
- 16. ALL FINAL MANHOLE RIM ELEVATIONS IN LANDSCAPE AREAS ARE TO BE SET AT FOUR-INCHES ABOVE FINISHED GRADE (1.E. AFTER LANDSCAPING IS COMPLETE).
- 17. ALL CEMENT STABILIZED SAND UTILIZED ON THIS PROJECT SHALL CONFORM WITH THE GRADATION INDICATED IN THE TECHNICAL SPECIFICATIONS AND BE MIXED WITH TWO SACKS OF CEMENT PER CUBIC YARD OF SAND.
- 18. ALL EXISTING DITCHES PROPOSED FOR FILL (OR THOSE FILLED DURING THE COURSE OF THE PROJECT) SHALL BE COMPLETELY STRIPPED (A MINIMUM OF 6-INCHES) AND MUCKED OUT IN THE PRESENCE OF THE GEOTECHNICAL ENGINEER. REMOVED MATERIAL (STRIPPING AND MUCKING) SHALL BE REMOVED FROM THE PROJECT SITE AND DISPOSED OF IN A LEGAL MANNER. ALL SOIL TO FILL EXISTING DITCHES OR TO MAKE GRADE FOR PROPOSED PARKING IMPROVEMENTS SHALL BE OBTAINED FROM EXCESS UTILITY/PARKING EXCAVATION OR BE HAULED TO THE SITE BY THE CONTRACTOR. ANY MATERIAL HAULED TO THE SITE MUST BE A STRUCTURAL FILL MATERIAL (P.I. BETWEEN 8 AND 22 AND A LIQUID LIMIT LESS THAN 42). ALL FILL SHALL BE PLACED IN MAXIMUM 6-INCH LOOSE LIFTS AND COMPACTED TO A MINIMUM OF 95% STANDARD PROCTOR MAXIMUM DRY DENSITY AT A MOISTURE CONTENT WITHIN +/- 2 PERCENTAGE POINTS OF OPTIMUM AS DETERMINED BY ASTM D698.

- 9. REFERENCE IS MADE IN SUBSEQUENT NOTES AND DETAILS REGARDING THE PLACEMENT OF CEMENT STABILIZED SAND UNDER OR WITHIN 3 FEET OF PROPOSED PAVEMENT. BY DEFINITION, THIS MEANS ALL AREAS BENEATH OR WITHIN 3 FEET OF PAVEMENT IN ADDITION TO A LINE STARTING AT 3 FEET FROM PAVEMENT AND EXTENDING AWAY FROM THE PAVEMENT ON A DOWNWARD SLOPE OF ONE FOOT HORIZONTAL TO ONE FOOT VERTICAL.
- THESE PLANS. PREPARED BY COSTELLO. INC.. DO NOT EXTEND TO OR INCLUDE DESIGNS OR SYSTEMS PERTAINING TO THE SAFETY OF THE CONTRACTOR OR ITS EMPLOYEES. AGENTS. OR REPRESENTATIVES IN THE PERFORMANCE OF THE WORK. THE SEAL OF THE REGISTERED PROFESSIONAL ENGINEER(S) HEREON DOES NOT EXTEND TO ANY SUCH SYSTEMS THAT MAY NOW OR HEREAFTER BE INCORPORATED IN THESE PLANS. THE CONTRACTOR SHALL PREPARE OR OBTAIN THE APPROPRIATE SAFETY SYSTEMS. INCLUDING THE PLANS AND SPECIFICATIONS REQUIRED BY THE HOUSE BILLS 652 AND 665 ENACTED BY THE TEXAS LEGISLATURE IN THE 70TH LEGISLATURE REGULAR SESSION AND CURRENT OSHA STANDARDS FOR TRENCH SAFETY. DESIGN OF TRENCH SAFETY SYSTEMS. SEALED BY A LICENSED PROFESSIONAL ENGINEER. SHALL BE SUBMITTED BY THE CONTRACTOR PRIOR TO EXECUTION OF A CONTRACT FOR THIS WORK.
- 21. ALL CONTRACTOR VEHICLES. INCLUDING EMPLOYEE'S VEHICLES. SHALL PARK WITHIN THE PROJECT SITE TO MINIMIZE TRAFFIC ON THE PUBLIC STREETS ADJACENT TO THE WORK SITE ENTRANCE. CONTRACTOR WILL PROVIDE SUFFICIENT PARKING AREAS TO ACCOMMODATE HIS VEHICLES. THE CONTRACTOR SHALL. ON A DAILY BASIS. CLEAN ALL STREETS IN THE VICINITY OF THE WORK SITE ENTRANCE TO ENSURE THAT NO DIRT FROM THE PROJECT ACCUMULATES IN THE EXISTING STREETS.

STORM SEWER CONSTRUCTION NOTES

- 1. STORM SEWERS SHALL BE CONSTRUCTED IN ACCORDANCE WITH CITY OF HOUSTON DESIGN STANDARDS AS CURRENTLY AMENDED UNLESS SPECIFIED OTHERWISE ON PLANS OR TECHNICAL SPECIFICATIONS.
- 2. ALL STORM SEWER 24-INCH AND GREATER IN DIAMETER SHALL BE HDPE UNLESS OTHERWISE NOTED ON THE PLANS. BEDDED AND BACKFILLED IN ACCORDANCE WITH CITY OF HOUSTON DESIGN STANDARDS. UNLESS OTHERWISE INDICATED ON PLANS OR TECHNICAL SPECIFICATIONS. ALL STORM SEWERS SHALL HAVE RUBBER GASKET JOINTS. ALL STORM SEWER PIPE AND FITTINGS UP TO 15-INCHES IN DIAMETER SHALL BE CONSTRUCTED OF PVC SDR 35 CONFORMING TO ASTM D3034. ALL STORM SEWER 18-INCHES IN DIAMETER SHALL BE. AT CONTRACTORS OPTION. REINFORCED CONCRETE PIPE (C-76 CLASS III) OR PVC SDR 35 CONFORMING TO ASTM F 679. ALL PVC JOINTS SHALL CONFORM TO ASTM D3212. JOINTS SHALL BE BELL AND SPIGOT TYPE WITH RUBBER GASKET CONFORMING TO ASTM 477. CHEMICALLY WELDED PVC PIPE JOINTS ARE NOT ACCEPTABLE.
- 3. ALL STORM SEWERS UNDER OR WITHIN THREE (3) FEET OF PROPOSED OR FUTURE PAVEMENT SHALL BE BACKFILLED WITH CEMENT STABILIZED SAND TO PAVEMENT SUBGRADE.
- 4. STORM SEWER MANHOLE COVERS SHALL BE LABELED STORM SEWER.

HARRIS COUNTY PERMIT NOTES

- 1. CONTRACTOR TO OBTAIN ALL PERMITS REQUIRED BY REGULATION OF HARRIS COUNTY TEXAS FOR FLOOD PLAIN MANAGEMENT PRIOR TO STARTING CONSTRUCTION.
- OWNER TO OBTAIN ALL PERMITS REQUIRED BY HARRIS COUNTY. TEXAS PRIOR TO STARTING CONSTRUCTION OF UTILITY AND/OR CULVERTS WITHIN HARRIS COUNTY ROAD RIGHT OF WAY.
- . THE PROPERTY OWNER OR THE CONTRACTOR SHALL CONTRACT THE HARRIS COUNTY
 STORM WATER OUALITY PERMITTING SECTION AT 713-956-3000 FOR A PRE-CONSTRUCTION
 INSPECTION PRIOR TO COMMENCING ANY CLEARING OR CONSTRUCTION ACTIVITIES
 ON THE SITE.
- 4. UPON COMPLETION OF CONSTRUCTION, THE OIL, GRIT & TRASH (HYDRO-DYNAMIC) SEPARATOR WILL BE CLEANED OF ALL SEDIMENTS AND DEBRIS THAT MAY HAVE ACCUMULATED. THIS MUST BE DONE PRIOR TO SUBMITTING AN "AS-BUILT CERTIFICATE" AND CALLING FOR A FINAL INSPECTION. HARRIS COUNTY WILL NOT ACCEPT THE "AS-BUILT CERTIFICATE", PERFORM THE FINAL INSPECTION. OR ISSUE A CERTIFICATE OF COMPLIANCE UNTIL THE REQUIRED FINAL CLEAN OUT HAS BEEN COMPLETED. THE DEVELOPMENT CANNOT BE OCCUPIED UNTIL A CERTIFICATE OF COMPLIANCE IS ISSUED.
- "AUTHORIZARTION NOTICE ISSUED BY HARRIS COUNTY PUBLIC INFRASTRUCTURE ENGINEERING DEPARTMENT PERMIT OFFICE REQUIRED PRIOR TO CONSTRUCTION OF UTILITIES OR LEFT TURN LANES WITHIN HARRIS COUNTY RIGHT-OF-WAY." CONTACT HARRIS COUNTY PERMIT OFFICE (713-956-3000).

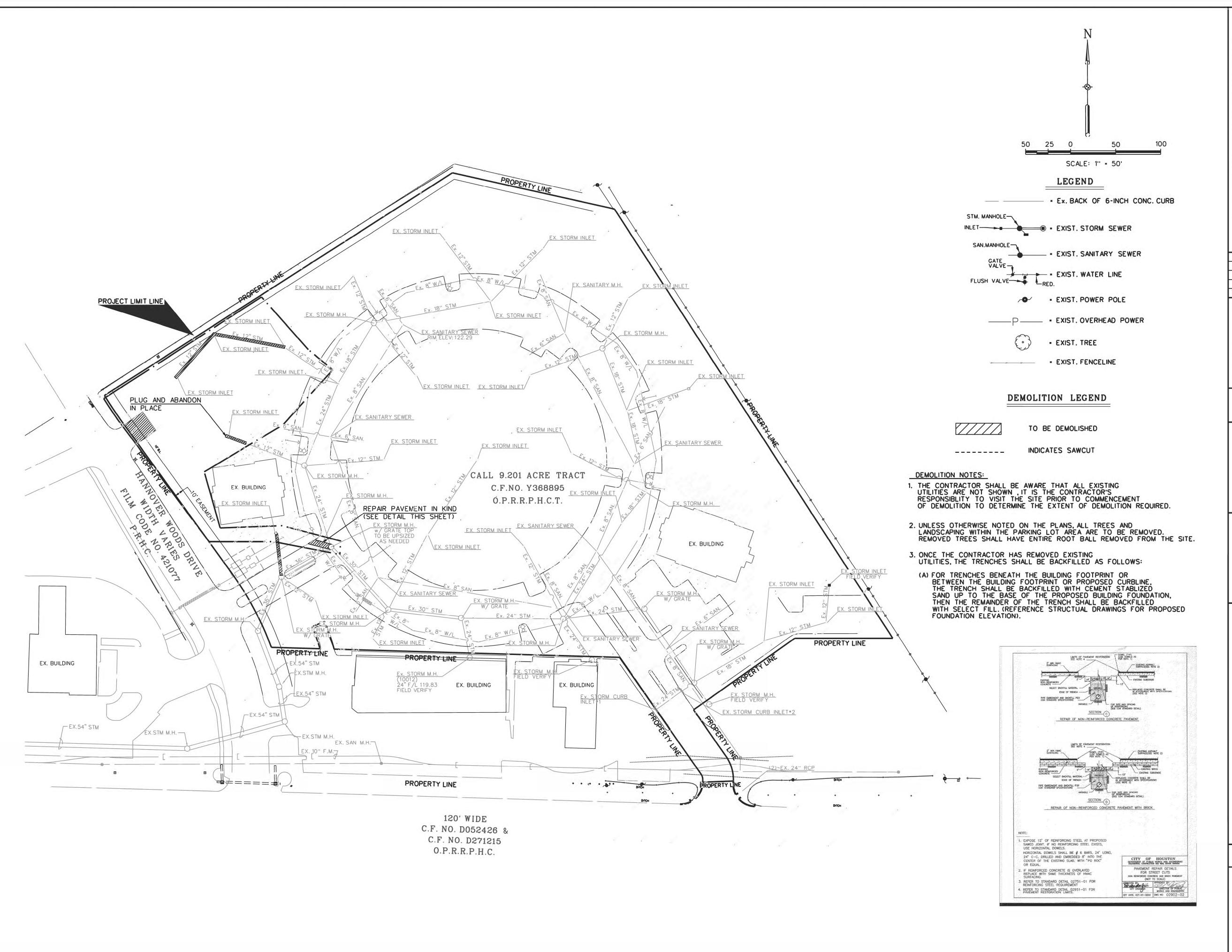
10.	REVISION	DATE	BY

WILLOW PARK CONDOMINIUMS

CONSTRUCTION NOTES

TBPE FIRM REG. No. 280 TBPLS FIRM REG. No. 100486

MA MA MA	TE OF TE	7 ₅ 3 <u>0</u> 0 ER
Por.	83296 (/CENSED S/ONAL EX 12/23/2021	ON SECOND


W PARK CONDOS/DGN/03 NOTES

DRAWING SCALE:

SHEET

OF 16 SHEETS

JOB NO. 2021-271

CONTROL BENCHMARK

H.C.F.C. DISC STAMPED K120-01 BMP5 ON HEADWALL AT DOWNSTREAM END AT BOX CULVERT AT LOUETTA RD. AND SENGER GULLY ELEV.=115.83' 1973 ADJUSTMENT.

TBM 1597-17-1 NORTHEAST BOLT ON TOP FLANGE OF FIRE HYDRANT ON SOUTWEST SIDE OF HANNOVER WOODS DRIVE. ELEV. 129.44

TBM 1597-17-2
BENCH TIE IS SOUTHWEST FACE OF POWER POLE AT THE
NORTHEAST CORNER OF THE WILLOW PARK OFFICE
CONDOMINIUM SITE.
ELEV. 128.72

TBM 1597-17-3
BENCH TIE IN WEST FACE OF POWER POLE AT THE SOUTHEAST CORNER OF THE WILLOW PARK OFFICE CONDOMINIUM SITE. ELEV. 123.40

TBM 1597-18-4 "LL" IN MUELLER ON FIRST FIRE HYDRANT
ON NORTH SIDE OF FM 2920 WEST OF HANNOVER WOODS
DRIVE.
ELEV. 127.47

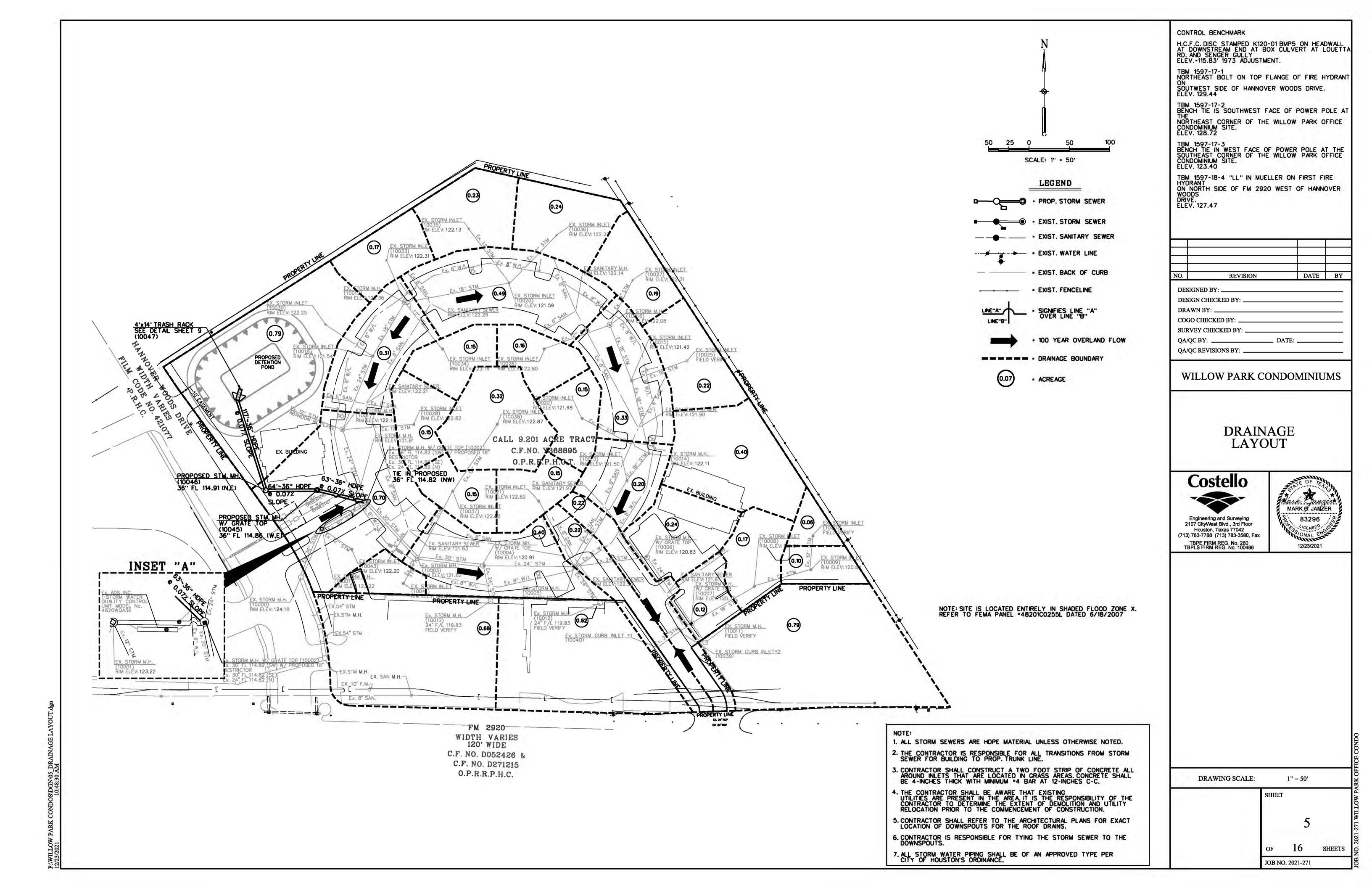
NO.	REVISION	DATE	BY
DESIGNEI) BY:		
DESIGN C	HECKED BY:		
DRAWN B	Y:		
COGO CHI	ECKED BY:		
SURVEY C	CHECKED BY:		
OA/OC DV	· ·	ATE.	

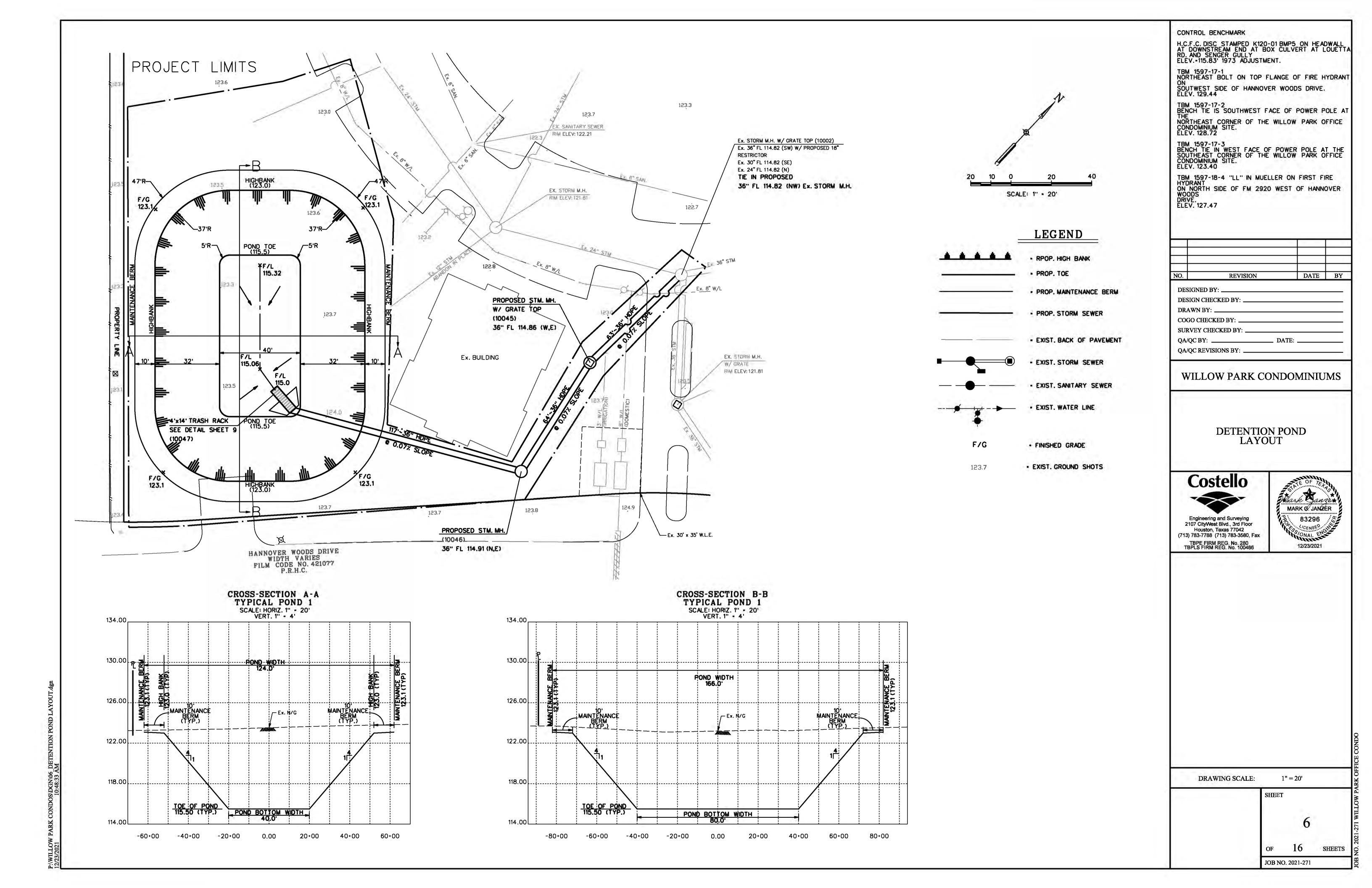
WILLOW PARK CONDOMINIUMS

TOPOGRAPHICAL &
DEMOLITION
LAYOUT

QA/QC REVISIONS BY:

Engineering and Surveying 2107 CityWest Blvd., 3rd Floor Houston, Texas 77042 (713) 783-7788 (713) 783-3580, Fax TBPE FIRM REG. No. 280 TBPLS FIRM REG. No. 100486


DRAWING SCALE:


1'' = 50'

SHEET

4 16 SHEETS

JOB NO. 2021-271

Date	CITY OF HOUST					Rainfall Data 4 HC Reg 3		Return	d I-D-F Coei n Freq (yr) b: d: e: Factor C _f : i=b/(d+Toei	2 48.35 9.07 0.7244 1.00	Q=C;*C*A*i																V	MAX in Pipe = 12.00 MAX @ Dutfall 8.00		Star	ting TW (Soffii	t) = @ Outfall		Fixed Curb Height @ Inlet (ft)	t			F	OH I-D-F Coef Return Freq (y I (Starting	10-year TW (6	(@ Outfall)	FROM BGE = NA	3.00,000,000	0-yr HGL Height INLET	t Above
FROM M.H. #	TO M.H.#	PARKS & OPEN AREAS	PAVEMENT & R.O.W.	Dra	entributing sainage Area	Composite Runoff Coefficient	Sum of C*A	Tim Concen	ne of ntration T _c)		Runoff Flov	w Reach	(in	Diameter nches) or Height P	Mai Pipe Coe	nning's fficient	G-Sect Area Hyd of Ra pe/Box (Flow	vline De	esign [Design apacity (Q _{DES}) (cfs)	Fall in Di Pipe to Reach I (ft) (.н.	0 @	ation Pipe	Soffitt Eleva /S D,	ation V	1.00	Z-year I Hydra Grad Sloj ocity (S _H)	ent De Head	Hydrau	lic Grade Line levation D/S (ft)		0	Natural Ground @ R.O.W	HGL Above(+) / Below(-) Gutter - @ Inlets (ft)	2-year Design Check at Inlet Location		rime of centration	100	Flow	Actual Velocity (V _{ACT}) (fps)	al ty Velocity	Hydraulic Gradient Slope y (S _{HYD})		Hydraulic Elev U/S (ft)	evation	HGL Above(+) / Belov T/C @ Inlets (ft)	Ch	Analysis neck @ .ocation
CB 10010 CB 10009 CB 10008 MH 10007 MH 10006 MH 10005 MH 10004 MH 10003 MH 10002 MH 10001	CB 10009 CB 10008 MH 10007 MH 10006 MH 10005 MH 10004 MH 10003 MH 10002 MH 10001 MH 10100	0.06 0.02 0.03 0.01 0.04 0.00 0.08 0.00 0.10	0.00 0.08 0.14 0.11 0.20 0.00 0.32 0.00 0.20	8 4 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0.06 0.06 0.10 0.16 0.17 0.33 1.36 1.69 0.24 1.93 2.42 4.35 1.08 5.43 0.57 6.00 3.04 9.04 9.24	0.6600 0.7679 0.7694 0.7543 0.7674 0.7404	0.01 0.09 0.22 1.30 1.49 3.28 4.17 4.44 6.61 6.72	21.1 12.4 3.4 26.7 1.4 30.1 25.4 27.5 29.3 24.0	36.9 41.0 42.4 43.6	4.10 3.19 3.02 2.84 2.78 2.74 2.71 2.69 2.67 2.65	0.04 0.28 0.66 3.68 4.13 8.98 11.31 11.96 17.64	42 72 91 100 93 109 82 94 65		12 F 12 F 18 F 24 F 24 F 30 F 30 F 36 F 42 F	RCP 00	0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013	0.79 0. 0.79 0. 1.77 0. 3.14 0. 3.14 0. 3.14 0. 4.91 0. 4.91 0. 7.07 0. 9.62 0.	250 0.3 250 0.3 250 0.3 375 0.1 500 0.1 500 0.1 500 0.1 500 0.3 500 0.3 500 0.3 500 0.3 500 0.3 500 0.3 500 0.3 500 0.3 500 0.3 500 0.3 500 0.3 500 0.3 500 0.3 500 0.3	320 2 320 2 180 2 130 2 130 2 130 2 190 2 190 2	2.5 2.6 2.6 2.6 2.5 2.5 2.5	2.02 2.02 4.46 8.16 8.16 8.16 12.31 12.31 17.65 28.46	0.23 0.1 0.16 1 0.13 0.1 0.12 0 0.14 0 0.07 0 0.08 0 0.05 0		92 117 46 116 33 116 91 115 27 115 20 115 82 114	92 11: 76 11: 33 11: 21 11: 77 11: 20 11: 12 11: 77 11:	9.28 11 9.15 11 9.42 11 8.46 11 8.33 11 7.91 11 7.77 11 7.70 11 7.82 11 7.97 11	19.26 18.33 18.21 17.77 17.70 17.62	0.06 Vel 0.35 Vel 0.37 Vel 1.17 Vel 1.32 Vel 2.86 Vel 2.30 Vel 2.44 Vel 2.50 Vel 1.85 Vel	I-OK	00 0.00 06 0.00 04 0.00 07 0.00 33 0.00 68 0.11 67 0.00 68 0.00 70 0.04	00 119.27 04 119.27 04 119.26 118.36 118.33 118.33 12 118.33 13 118.33 14 118.33 15 118.33 16 118.07 17 19 117.99	119.27 119.26 119.26 118.33 118.30 118.13 118.07 117.99 117.94 117.92	NA NA NA NA NA NA NA	120.84 120.84 121.04 120.79 120.83 120.91 120.91 121.23 121.23	NA NA NA NA NA NA NA	-1.572 -1.572 -1.776 -2.433 -2.499 -2.610 -2.782 -3.164 -3.244 -3.290	OK OK OK OK OK OK OK OK OK	21.1 5.5 1.3 24.9 0.5 25.6 24.8 25.1 25.5 23.2	26.6 27.9 29.4 29.9 30.4	9.27 8.28 8.09 7.87 7.80 7.75 7.72 7.69 7.67	0.10 0.72 1.76 10.22 11.59 25.43 32.17 34.18 50.66 51.36	0.13 0.91 1.00 3.25 3.69 8.09 6.55 6.96 7.17 5.34	Vel-OK Vel-OK Vel-OK Vel-OK Vel-OK Vel-OK	0.001 0.040 0.028 0.204 0.262 1.264 0.615 0.694 0.577	0.00 0.03 0.03 0.20 0.24 1.38 0.50 0.65 0.38	121.50 121.50 121.47 121.45 121.24 121.00 119.62 119.12 118.46 118.09	121.47 121.45 121.24 121.00 119.62 119.12 118.46 118.09	0.6 0.4 0.6 0.4 0.0 -1.2 -2.1	662 Metho 662 Metho 433 Metho 557 Metho 413 Metho 889 Metho 113 Metho 666 Metho 441 Metho	od 1 - OK
MH 10011	MH 10007	0.04	0.75	5	0.79 0.79	0.8635	0.68	24.6	24.6	3.79	2.58	29		24 F	RCP 0	0.013	3.14 0.	500 0.1	130 2	2.6	8.16	0.04 0.	000 116.	50 116	46 11	8.50 11	18.46	0.82 Ve	I-OK 0.0	13 0.00	04 118.46	118.46	NA NA	120.79	NA	-2.326	ОК	24.6	24.6	8.61	5.87	1.87	Vel-OK	0.067	0.02	121.47	121.45	0.€	577 Metho	d 1 - OK
MH 10012	MH 10005	0.02	0.60	0	0.62 0.62	0.8768	0.54	24.2	24.2	3.82	2.08	60		24 F	RCP 0	0.013	3.14 0.	500 0.1	130 2	2.6	8.16	0.08 0	116.	29 116	21 11	8.29 11	18.21	0.66 Ve	el-OK 0.00	0.00	05 118.30	118.30	NA NA	120.91	NA	-2.605	ОК	24.2	24.2	8.68	4.72	1.50	Vel-OK	0.043	0.03	121.03	121.00	0.1	115 Metho	d 1 - OK
MH 10016 CB 10015 MH 10014 CB 10013	CB 10015 MH 10014 CB 10013 MH 10005	0.00 0.06 0.00 0.04	0.00 0.27 0.00 0.16	7	0.35 0.35 0.55 0.90 0.55 1.45 0.20 1.65	0.7320 0.6815	0.25 0.66 0.99 1.14	24.6 24.2 25.9 0.4	24.6 26.9 28.1 28.4	3.78 3.61 3.52 3.50	0.95 2.38 3.48 3.99	74 93 43 124		18 F 18 F 18 F 24 F	RCP 0	0.013	1.77 O. 1.77 O.	375 0. 1 375 0. 1 375 0. 1 500 0. 1	180 2	2.5	4.46 4.46 4.46 8.16	0.17 0	200 117. 200 117.	.25 117	45 119 17 118	9.12 11 8.75 11	18.95 18.67	0.54 Vel 1.34 Vel 1.97 Vel 1.27 Vel	el-OK 0.00 el-OK 0.00 el-OK 0.10 el-OK 0.00	08 0.00 51 0.04 10 0.04 31 0.03	48 119.14 47 119.10	119.14 119.10 119.05 119.01	NA NA	121.42 121.42 121.50	NA NA NA NA	-2.271 -2.277 -2.404 -2.451	ОК ОК ОК	23.3 23.3 24.0 0.1		8.84 8.66 8.58 8.55	2.21 5.71 8.48 9.75	1.25 3.23 4.80 3.10	Vel-OK Vel-OK	0.044 0.295 0.651 0.186	0.03 0.27 0.28 0.23	121.78 121.51	121.78 121.51 121.23 121.00	0.30	Metho Metho Metho Metho Metho	od 1 - OK od 1 - OK
CB 10020 MH 10019 CB 10018 MH 10017	MH 10019 CB 10018 MH 10017 MH 10002	0.10 0.00 0.04 0.00	0.39 0.00 0.27 0.00	0	0.96 0.96 0.32 1.28 0.41 1.69 0.15 1.84	0.6900 0.6975 0.7083 0.7122	0.66 0.89 1.20 1.31	24.8 24.3 25.9 24.7	26.3		2.50 3.26 4.31 4.61	130 77 99 95		18 F 18 F 24 F	RCP 0	0.013	1.77 0.	375 0.1	180 2	2.5		0.14 0.0	000 115.		07 11		16.57	1.84 Ve	el-OK 0.09 el-OK 0.09 el-OK 0.09	57 0.00 96 0.00 36 0.00 41 0.00	73 118.21 74 118.14 86 118.06 39 118.03	118.14 118.06 118.03 117.99	NA NA NA	121.59 121.54 121.54 121.23	NA NA NA NA	-3.381 -3.405 -3.479 -3.205	ОК ОК ОК	23.6 23.1 23.5 23.3	24.3	8.78 8.66 8.61 8.52	5.81 7.73 10.31 11.17	3.29 4.38 3.28 3.56	Vel-OK	0.542	0.42	119.72 119.32 118.90 118.70	119.32 118.90 118.70 118.46	-2.2	Metho Metho Metho Metho Metho	od 1 - OK od 1 - OK
CB 10021	MH 10005	0.03	0.12	2	0.15 0.15	0.7560	0.11	22.2	22.2	4.00	0.45	83		12 F	RCP 0	0.013	0.79 0.	250 0. 3	320 2	2.6	2.02	0.27 3.	000 119.	18 118	91 120	0.18 11	19.91	0.58 Ve	el-OK 0.0	16 0.03	13 119.92	119.91	NA NA	122.82	. NA	-2.897	ОК	22.2	22.2	9.06	1.03	1.31	Vel-Ok	0.083	0.07	121.07	121.00	-1.7	752 Metho	d 1 - OK
CB 10022	MH 10014	0.03	0.12	2	0.15 0.15	0.7560	0.11	22.2	22.2	4.00	0.45	93		12 F	RCP 0	0.013	0.79 0.	250 0. 3	320 2	2.6	2.02	0.30 0.	000 117.	55 117	25 11	8.55 11	18.25	0.58 Ve	el-OK 0.0	16 0.0:	15 119.11	119.10	NA NA	121.98	NA NA	-2.869	ОК	22.2	22.2	9.06	1.03	1.31	Vel-OK	0.083	0.08	121.59	121.51	-0.3	393 Metho	d 1 - OK
CB 10024 CB 10023	CB 10023 MH 10014	0.10 0.10	0.10	0	0.20 0.20 0.20 0.40	0.5400 0.5400	0.11	22.5 1.7	22.5 24.3	3.96 3.81	0.43 0.82	57 104		12 F	RCP 0	0.013	0.79 0. 0.79 0.	250 0.3	320 2 320 2	2.6	2.02	0.18 0. 0.00 1. 0.33 1. 0.00 1.0.00 1.0.00 1.0.00 1.0.00 1.0.00 1.0.00 1.0.00 1.0.00 1.0.00 1.0.00 1.0.00 1.0.00 1.0.00 1.0.00 1.0.00 1.0.00 1.0.00 1.0.00 1.0.000 1.0.000 1.0.000 1.0.00 1.0.000 1.0.000 1.0.000 1.0.000 1.0.0000 1.0.0000 1.	000 118. 000 118.	.76 118 .58 118	58 11: 25 11:	9.76 11 9.58 11	19.58 19.25	0.54 Ve 1.05 Ve	I-OK 0.0	14 0.00 53 0.09	08 119.59 56 119.31	119.58 119.25	NA NA	122.50 122.50	NA NA	-2.912 -3.194	ОК	22.5 0.8	22.5 23.3	8.98 8.84	0.97 1.91	1.24 2.43	Vel-OK Vel-Ok	0.074	0.04	121.85 121.81	121.81 121.51	-0.6 -0.f	Metho Metho	
CB 10025	CB 10015	0.06	0.16	6	0.22 0.22	0.7036	0.15	22.7	22.7	3.95	0.61	73		12 F	RCP 0	0.013	0.79 0.	250 0. 3	320 2	2.6	2.02	0.23 0	200 118.	05 117	82 119	9.05 11	18.82	0.78 Ve	I-OK 0.03	29 0.02	22 119.16	119.14	NA	121.42	. NA	-2.255	ОК	22.7	22.7	8.96	1.39	1.77	Vel-Ok	0.151	0.11	121.89	121.78	0.4	174 Metho	d 1 - OK
CB 10026	MH 10016	0.03	0.13	3	0.16 0.16	0.7650	0.12	22.2	22.2	3.99	0.49	89		12 F	RCP 0	0.013	0.79 0.	250 0. 3	320 2	2.6	2.02	0.28 0.	200 118.	23 117	95 11	9.23 11	18.95	0.62 Ve	el-OK 0.0	19 0.03	17 119.17	119.15	NA	122.80	NA NA	-3.634	ОК	22.2	22.2	9.04	1.11	1.41	Vel-OK	0.096	0.09	121.90	121.82	3.0-	398 Metho	d 1 - OK
CB 10027	MH 10016	0.06	0.13	3	0.19 0.19	0.6726	0.13	22.5	22.5	3.97	0.51	62		12 F	RCP 0	0.013	0.79 0.	250 0. 3	320 2	2.6	2.02	0.20 0.3	200 118.	15 117	95 11	9.15 11	18.95	0.65 Ve	el-OK 0.03	20 0.03	13 119.16	119.15	NA NA	122.31	. NA	-3.148	ОК	22.5	22.5	9.00	1.15	1.46	Vel-OK	0.104	0.06	121.88	121.82	-0.4	29 Metho	d 1 - OK
CB 10028	MH 10017	0.03	0.12	2	0.15 0.15	0.7560	0.11	22.2	22.2	4.00	0.45	88		12 F	RCP 0	0.013	0.79 0.	250 0.3	320 2	2.6	2.02	0.28 4.	300 119.	52 119	24 120	0.52 12	20.24	0.58 Ve	el-OK 0.0	16 0.03	14 120.25	120.24	NA NA	122.82	NA	-2.566	ОК	22.2	22.2	9.06	1.03	1.31	Vel-OK	0.083	0.07	120.31	120.24	-2.5	07 Metho	d 1 - OK
CB 10030	CB 10018	0.05	0.05	5	0.10	0.5400	0.05	21.7	21.7	4.04	0.22	70		12 F	RCP 0	0.013	0.79 0.	250 0.3	320 2	2.6	2.02	0.22 4.	500 119.	79 119	.57 12	0.79 12	20.57	0.28 Ve	I-OK 0.00	0.00	120.57	120.57	NA	122.25	NA	-1.677	ОК	21.7	21.7	9.15	0.49	0.63	Vel-OK	0.019	0.01	120.58	120.57	-1.6	Metho	d 1 - OK
CB 10033	MH 10019	0.05										57		12 F	RCP 0	0.013	0.79 0.	250 0.3	320 2	2.6	2.02	0.18 0.	500 115.	89 115	71 11	6.89 11	16.71	0.59 Ve	el-OK 0.0	17 0.03	10 118.15	118.14	NA NA	122.31	NA	-4.165	ОК	22.3	22.3	9.02	1.06	1.34	Vel-OK	0.088	0.05	119.37	119.32	-2.9	941 Metho	d 1 - OK
CB 10034	MH 10019	0.03										74																																				-2.70	69 Metho	d 1 - OK
CB 10035	CB 10020	0.10										84																																			119.72		Metho	11-OK
CB 10036	CB 10020	0.08				0.6600																																1000									119.72		371 Metho	11-OK
CB 10038 CB 10037	CB 10037 MH 10003	0.24	0.02 0.12	2	0.32 0.32 0.15 0.47	0.3600 0.4864	0.12	23.2 2.9	23.2	3.90 3.67	0.45	99		12 F	RCP 0	0.013	0.79 0. 0.79 0.	250 0.3 250 0.3	320 2	2.6	2.02	0.32 2. 0.30 3. 0.30	000 120. 000 118.	82 120 50 118	50 12 20 11	1.82 12 9.50 11	21.50 19.20	0.57 Vel	el-OK 0.0	1.6 0.05 55 0.05	16 121.52 52 119.25	121.50 119.20	NA NA	122.87 122.82	NA NA	-1.354 -3.568	ОК	1.3	23.2 24.5	8.86 8.63	1.02	1.30 2.51	Vel-OK Vel-OK	0.082	0.08	121.58 119.49	121.50 119.20	-1.2 -3.3	Metho Metho	
CB 10040 CB 10039	CB 10039 MH 10007	0.08	0.14 0.16	6	0.22 0.22 0.23 0.45	0.6382 0.6600	0.14	22.7 3.2	22.7 25.9	3.95 3.68	0.55 1.09	34 18		24 F	RCP 0	0.013	3.14 O. 3.14 O.	500 0.1	130 2	2.6	8.16 8.16	0.04 0. 0	200 116. 200 116.	72 116 48 116	68 113 46 113	8.72 11 8.48 11	18.68 18.46	0.18 Ve 0.35 Ve	el-OK 0.00	0.00	00 118.68 00 118.46	118.68 118.46	NA NA	120.46 120.46	NA NA	-1.780 -2.000	OK OK	22.7 1.4	22.7	8.96 8.70	1.26 2.58	0.40	Vel-OK Vel-Ok	0.003	0.00	121.45 121.45	121.45 121.45	0.9	991 Metho 990 Metho	
CB 10041	MH 10003	0.06	0.04	4	0.10 0.10	0.4680	0.05	21.7	21.7	4.04	0.19	36		12 F	RCP 0	0.013	0.79 0.	250 0.3	320 2	2.6	2.02	0.12 3.4	100 118.	72 118	60 11	9.72 11	19.60	0.24 Ve	I-OK 0.00	0.00	01 119.60	119.60	NA NA	122.26	NA NA	-2.659	ОК	21.7	21.7	9.15	0.43	0.55	Vel-OK	0.014	0.01	119.61	119.60	-2.6	55 Metho	d 1 - OK
CB 10043	MH 10001	0.10	0.10	0	0.20 0.20	0.5400	0.11	22.5	22.5	3.96	0.43	47		12 F	RCP 0	0.013	0.79 0.	250 0.3	320 2	2.6	2.02	0.15 3.	117.	62 117	47 11	8.62 11	18.47	0.54 Ve	el-OK 0.0	0.00	07 118.48	118.47	NA NA	122.20	NA NA	-3.723	ОК	22.5	22.5	8.98	0.97	1.24	Vel-OK	0.074	0.03	118.50	118.47	-3.6	595 Metho	d 1 - OK
MH 10044	MH 10004	0.04	0.64	4	0.68 0.68	0.8576	0.58	24.3	24.3	3.81	2.22	45		24 F	RCP 0	0.013	3.14 0.	500 0.1	130 2	2.6	8.16	0.06 3.	300 118.	63 118	.57 12	0.63 12	20.57	0.71 Ve	el-OK 0.0	0.00	120.57	120.57	NA NA	120.91	. NA	-0.336	ОК	24.3	24.3	8.65	5.04	1.61	Vel-OK	0.050	0.02	120.59	120.57	-0.3	318 Metho	d 1 - OK
POND JB 10045 MH 10046	JB 10045 MH 10046 MH 10002	0.15 0.00 0.10	0.55 0.00 0.10	5 0	0.70 0.70 - 0.70 0.20 0.90	0.7457 0.7457 0.7000	0.52 0.52 0.63	24.4 6.9 3.9	24.4 31.3 35.2	3.80 3.32 3.10	1.98 1.98 1.98	117 65 63		36 F	RCP 0 RCP 0 RCP 0	0.013 0.013 0.013	7.07 0. 7.07 0. 7.07 0.	750 0.0 750 0.0 750 0.0	070 2 070 2	2.5 2.5 2.5	17.65 17.65 17.65	0.08 0. 0 0.05 0. 0 0.04 0. 0	000 114. 000 114. 000 114.	99 114 91 114 86 114	91 11 86 11 82 11	7.99 11 7.91 11 7.86 11	17.91 17.86 17.82	0.28 Ve 0.28 Ve 0.28 Ve	el-OK 0.00 el-OK 0.00	0.00 01 0.00 01 0.00	01 117.99 01 117.99 01 117.99	117.99 117.99 117.99	NA NA NA	123.50 124.00 121.23	NA NA NA	-5.512 -6.013 -3.244	ОК ОК	24.4 3.1 1.7	24.4 27.4 29.1	8.64 8.15 7.91	4.51 4.51 4.98	0.64 0.64 0.71	Vel-OK Vel-OK Vel-OH	0.005 0.005 0.006	0.01 0.00 0.00	118.48 118.47 118.47	118.47 118.47 118.46	-5.0 -5.5 -2.	Metho Metho Metho Metho	od 1 - OK

Orifice Discharge

 $Q=cA(2*g*h)^1/2$

Max Allowable Q (cfs) = 22.9

Target WSEL (100-yr) = 122.00

D/S Tailwater = 118.00 @ Top of Pipe h = 4.00 ft

c = 0.80

Orifice Diameter = 1.50 ft 18" orifice

Q(cfs) = 22.19 At Max Head

WILLOW PARK OFFICE CONDO

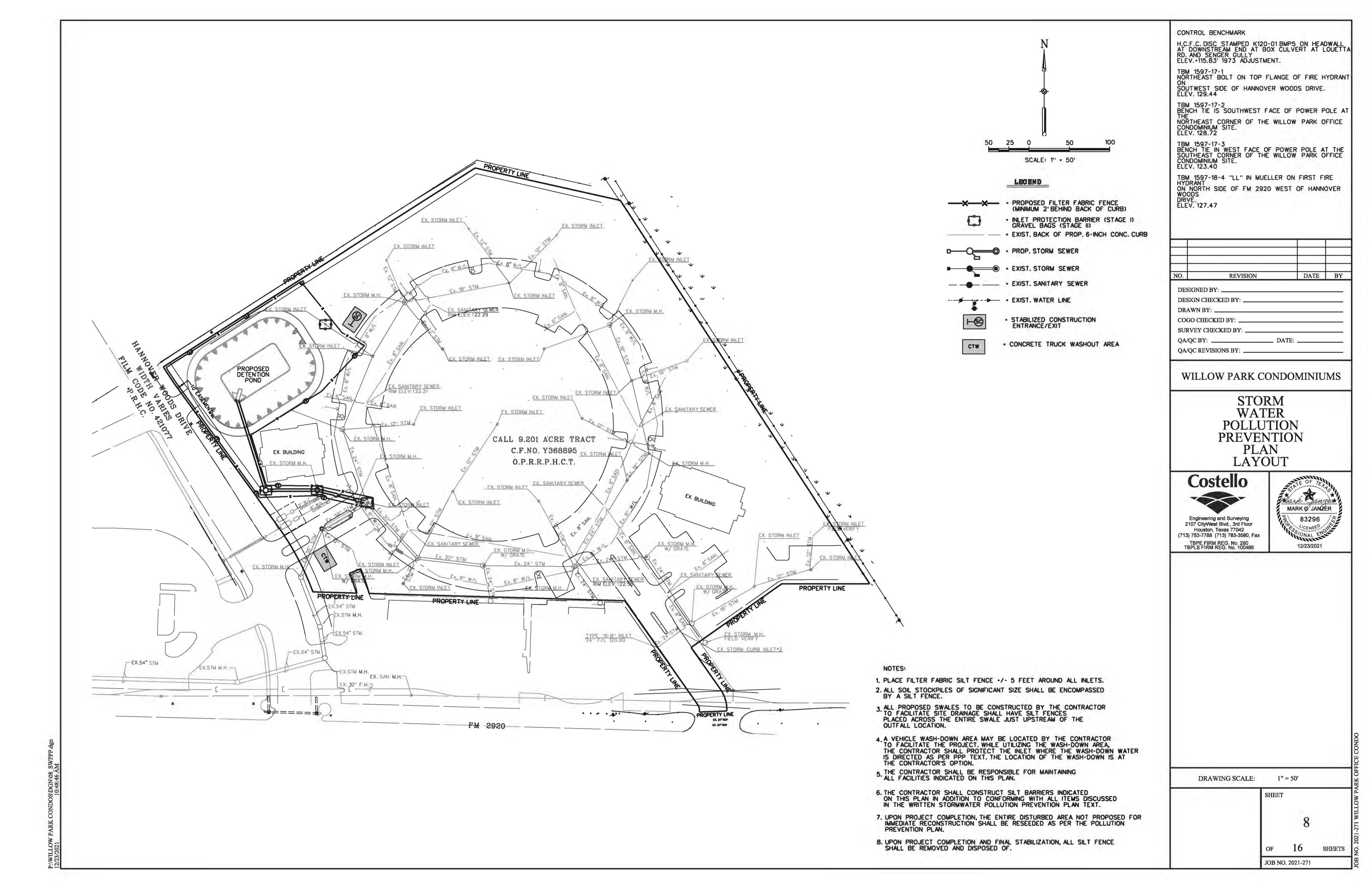
	DETENTION PC	ND VOLUM	1E	
FLEVATION	DEPTH	AREA	INC. VOL	CUMULATIVE VOL
ELEVATION	(FT)	(AC)	(AC-FT)	(AC-FT)
115	0	0.07	0.00	0.00
122	7	0.30	1.30	1.30

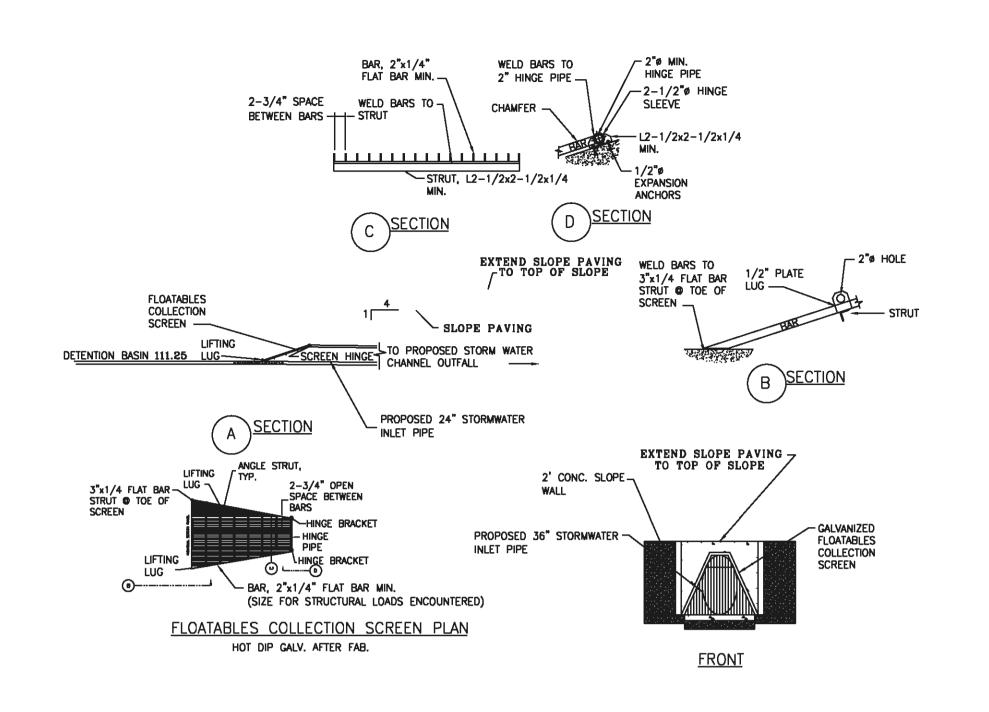
DETENTION POND A SUMMAR	Υ
SITE AREA (AC) =	6.87
DETENTION RATE (AC-FT/AC) =	0.18
DETENTION REQUIRED (AC-FT) =	1.24
DETENTION PROVIDED (AC-FT) =	1.30
AVG TOE ELEVATION =	115
MAXIMUM DESIGN WSE =	122
HIGHBANK ELEVATION =	123
POND FOOTPRINT (AC) =	0.34

NO.	REVISION	DATE	BY

DESIGN CHECKED BY: ____ DRAWN BY: _____ COGO CHECKED BY: ____ SURVEY CHECKED BY: ____ QA/QC BY: _____ DATE: _ QA/QC REVISIONS BY: _

WILLOW PARK CONDOMINIUMS


DRAINAGE CALCULATIONS



DRAWING SCALE:

JOB NO. 2021-271

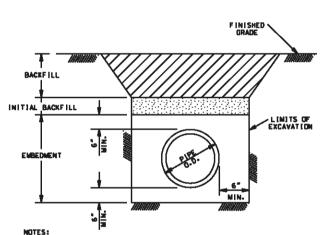
FLOATABLE COLLECTION SCREEN CALCULATIONS

SCREEN AREA REQUIRED

 $Q_{100}(cfs) = 55.65 cfs$

MINIMUM SCREEN AREA (s.f.) = Q (cfs)/0.92

= 51.20 cfs / 0.92


= 55.65 sf

SCREEN SIZE
WIDTH = 4.0 ft
LENGTH = 14.0 ft

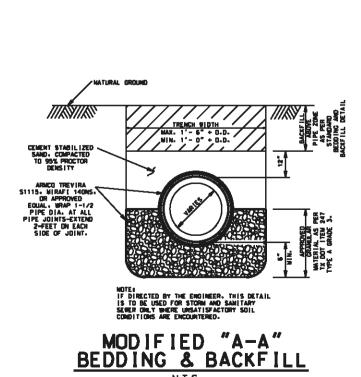
AREA OF SCREEN 56.0 sf

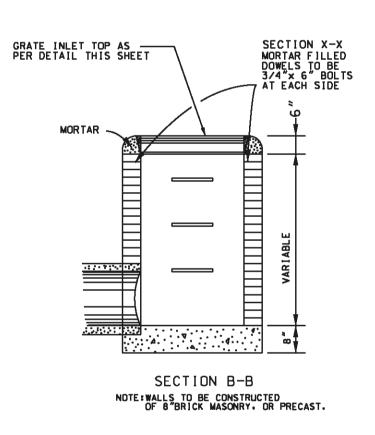
* SCREENS NEEDED = 55.65.sf>== 1.0

SCREEN AREA PROVIDED = 56 sf

MOTES:
1. BACKFILL SHALL BE MATIVE SOIL. FREE OF DEBRIS, COMPACTED TO
95% STANDARD PROCTOR DEMSITY, EXCEPT AS REQUIRED UNDER PAVEMENT.

2. INITIAL BACKFILL SHALL BE UNIFORMLY GRADED MATERIAL (MAXIMUM SIZE. 3" DIAMETER). PLACE IN 8" LIFTS AND COMPACTED TO 95% STANDARD PROCTOR DEMSITY. EXCEPT AS REQUIRED UNDER PAVEMENT.

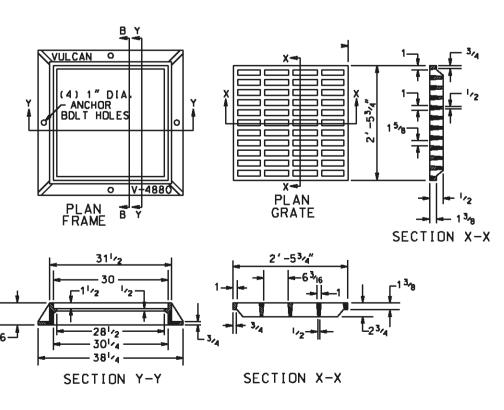

3. EMBEDMENT SHALL BE CEMENT STABILIZED SAND 12.0 SACKS PER CUBIC YARDI COMPACTED TO 95% STANDARD PROCTOR DENSITY.


 UNDER PAYING OR WITHIN 3' OF PAYEMENT, THE INITIAL BACKFILL AND ALL BACKFILL UP TO THE PAYEMENT SUBGRADE SHALL BE CEMENT STABILIZED SAND (2.0 SACKS PER CUBIC YARD) COMPACTED TO 95% STANDARD PROCTOR DENSITY.

5. TRENCH SHORING IM ACCORDANCE WITH OSHA. SHALL BE INSTALLED WHERE REQUIRED.

6. SOIL IN THE PIPE ZONE SHALL CONSIST OF NON-WATERBEARING. COMESINE SOILS WITH A SHEAR STRENGTH OF 1000 PSF OR GREATER. WHEN WET SAND EXISTS IN THE PIPE ZONE, MODIFIED BEDDING SHALL BE INSTALLED.

STORM SEWER BEDDING & BACKFILL

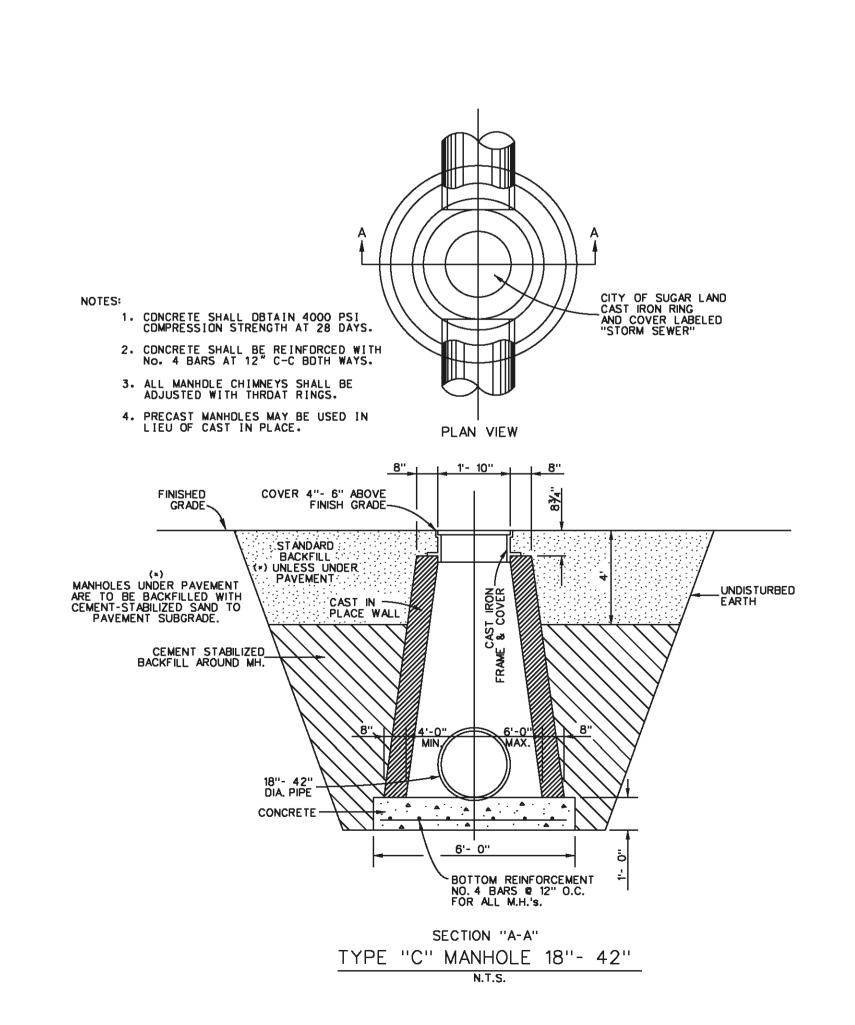


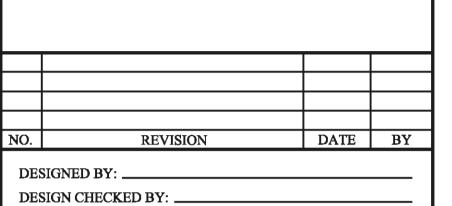
CATCH BASIN

N.T.S.

(VULCAN FOUNDRY INC., LOAD RATING, HEAVY DUTY)

(CATALOG NUMBER V-4880-3)




GRATE INLET TOP DETAIL

N.T.S.

(VULCAN FOUNDRY INC., LOAD RATING, HEAVY DUTY)

(CATALOG NUMBER V-4880-3)

WILLOW PARK CONDOMINIUMS

DRAINAGE DETAILS

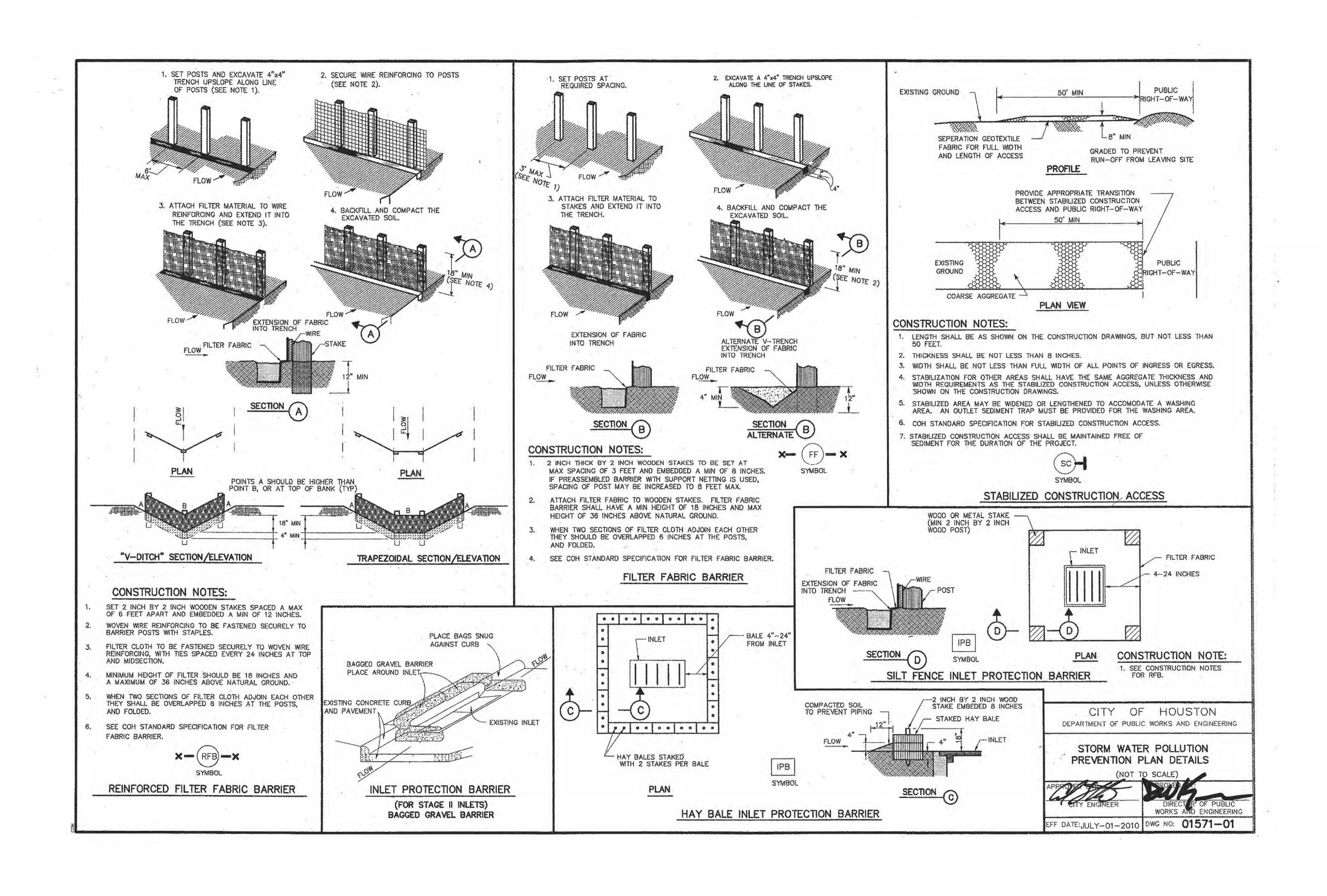
DRAWN BY: _

QA/QC BY: ____

COGO CHECKED BY: _
SURVEY CHECKED BY

QA/QC REVISIONS BY:

Engineering and Surveying 2107 CityWest Blvd., 3rd Floor Houston, Texas 77042 (713) 783-7788 (713) 783-3580, Fax TBPE FIRM REG. No. 280 TBPLS FIRM REG. No. 100486


DRAWING SCALE:

SHEET 9 of 16 sheets

OF 16

JOB NO. 2021-271

P:\WILLOW PARK CONDOS\DGN\09 DRAINAGE DET

CL CURVE DATA

NO. REVISION DATE BY

DESIGNED BY: ______

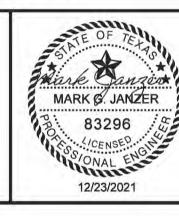
DESIGN CHECKED BY: ______

DRAWN BY: ______

COGO CHECKED BY: ______

WILLOW PARK CONDOMINIUMS

STORM WATER
POLLUTION
PREVENTION
PLAN
DETAILS



SURVEY CHECKED BY

QA/QC REVISIONS BY:

QA/QC BY: _

Engineering and Surveying 2107 CityWest Blvd., 3rd Floor Houston, Texas 77042 (713) 783-7788 (713) 783-3580, Fax TBPE FIRM REG. No. 280 TBPLS FIRM REG. No. 100486

DRAWING SCALE:

SHEET

)

SHEETS

JOB NO. 2021-271

16

Costello, Inc.

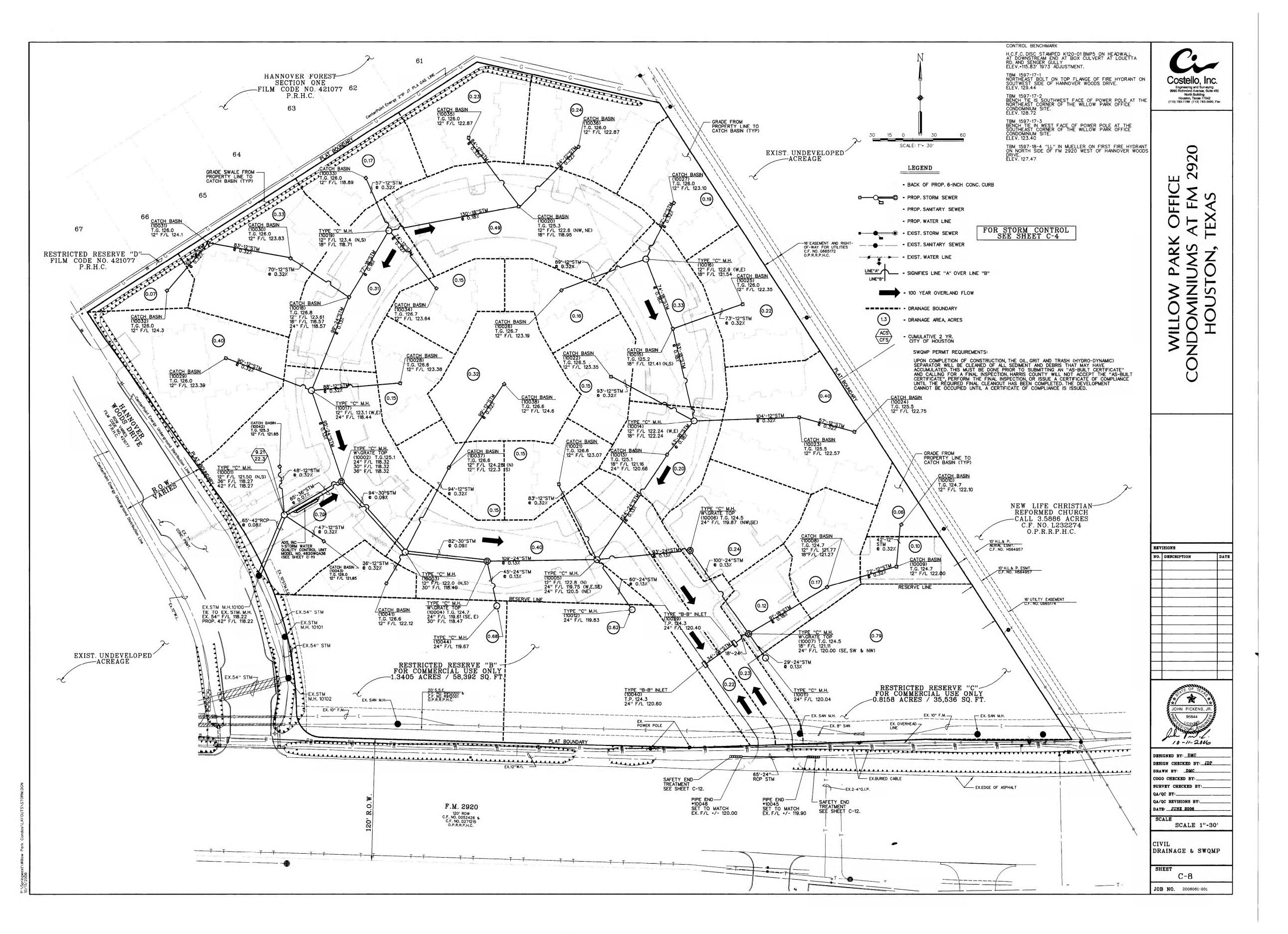
MINIM

DATE BY REVISION DESIGNED BY: _ DESIGN CHECKED BY: DRAWN BY: COGO CHECKED BY: SURVEY CHECKED BY: QA/QC BY: _____ QA/QC REVISIONS BY: ___

WILLOW PARK CONDOMINIUMS

WILLOW PARK CONDOMINIUMS HARRIS COUNTY **REVIEW SHEET**

DRAWING SCALE:


FOR REFERENCE ONLY

C-2

JOB NO. 2006061-001

SHEET

16 SHEETS JOB NO. 2021-271

NO.	REVISION		DATE	BY
DESIGN	ED BY:			
	CHECKED BY:			
DRAWN	BY:			
COGO C	HECKED BY:			
SURVEY	CHECKED BY:			
0011121				
	BY:	DATE: .		

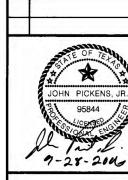
WILLOW PARK CONDOMINIUMS

WILLOW PARK CONDOMINIUMS DRAINAGE LAYOUT

DRAWING SCALE:

12 16 SHEETS

SHEET


JOB NO. 2021-271

FOR REFERENCE ONLY

Costello, Inc.
Engineering and Surveying
9990 Richmond Avenue, Sulte 450
North Building
Houston, Texas 77042
(713) 783-7788 (713) 783-3580, Fax

WILLOW PARK ONDOMINIUMS A HOUSTON, TE

NO. DESCRIPTION

SIGNED BY: DMC DESIGN CHECKED BY: JDP DRAWN BY: DMC COGO CHECKED BY:_ SURVEY CHECKED BY:__ QA/QC BY:____ QA/QC REVISIONS BY:_ DATE: JUNE 2006

DRAINAGE CALCULATION

C-9 JOB NO. 2006061-001

	Costello
1	Engineering and Surveying 2107 CityWest Blvd., 3rd Floor
1	Houston, Texas 77042 (713) 783-7788 (713) 783-3580, Fax TBPE FIRM REG. No. 280
4	TBPLS FIRM REG. No. 100486

N.T.S. CITY OF HOUSTON

DRAWING SCALE:

REVISION

WILLOW PARK CONDOMINIUMS

WILLOW PARK

CONDOMINIUMS

DRAINAGE

CALCULATIONS

COGO CHECKED BY SURVEY CHECKED BY

QA/QC REVISIONS BY:

DATE BY

SHEET

16 SHEETS JOB NO. 2021-271

FOR REFERENCE ONLY

Sum of

Flows

0.99

2.43

3.83

4.32

3.39

5.21

6.52

0.26

0.59

1.09

4.71

5.22

10.95

13.51

14.59

22.30

21.95

Intensity

(in/hr)

3.53

3.37

3.30

3.28

3.41

3.31

3.27

3.21

3,66

3.50

3.39

3.23

3.17

3.11

3.08

3.06

3.03

2.98

Sum of

0.28

1.16

1.32

1.02

1,59

2.03

0.17

0.32

1.46

1.65

3,52

4.38

4.78

7.37

7.37

Runoff

0.80

0.80

0.80

0.80

0.80

0.80

0.80

0.80

0.80

0.80

0.80

0.80

0.80

0.80

0.80

0.80

0.80

0.80

Time of

Concentration

2.21

1.13

0.33

1.46

0.67

1.00

2.08

1.60

2.47

1.11

0.93

0.52

0.50

0.53

0.93

Total

23,31

25.52

26.65

26.98

24.93

26.39

27.06

28.05

21.54

23.63

25.23

27.70

28.81

29.75

30.27

30.76

31.29

32.22

Area

Pipe/Box

1.77

1.77

1.77

3.14

1.77

1.77

3.14

3.14

0.79

0.79

1.77

3.14

3.14

3.14

4.91

4.91

7.07

9.62

Diameter

Span X Height

18

18

24

18

18

24

12

18

24

24

30

30

42

Reach

(ft.)

74

93

43

124

130

77

99

95

42

72

91

100

93

109

82

94

65

Hydraulic

Radius

(ft.)

0.38

0.38

0.38

0.50

0.38

0.38

0.50

0.50

0.25

0.25

0.38

0.50

0.50

0.50

0.63

0.63

0.75

0.88

Slope

0.18

0.18

0.18

0.13

0.18

0.18

0.13

0.13

0.32

0.32

0.18

0.13

0.13

0.13

0.09

0.09

0.07

0.08

Manning's

Coefficient

0.011

0.011

0.011

0.011

0.011

0.011

0.011

0.011

0.011

0.011

0.011

0.011

0.011

0.011

0.011

0.011

0.011

0.013

Design

Capacity

5.27

5.27

5.27

9.64

5.27

5.27

9.64

9.64

2.38

2.38

5.27

9.64

9.64

9.64

14.54

14.54

20.86

28.46

Design

Velocity

3.0

3.0

3.1

3.0

3.0

3.1

3.1

3.0

3.0

3.0

3.1

3.1

3.1

3.0

3.0

3.0

3.0

2-YEAR STORM SEWER CALCULATIONS PER COH 2002 CRITERIA

Drainage Area

(acres)

0.35

0.90

1.45

1.65

1.28

1.99

2.54

0.09

0.21

0.40

1.82

2.06

4.40

5.48

5.97

9.21

9.21

0.35

0.55

0.55

0.20

0.96

0.32

0.71

0.55

0.12

0.19

1.42

0.24

2.34

0.49

3.24

0.00

Willow Park Office Condos

C.I. JOB NO. 2006061-001

10016

10015

10014

10013

10020

10019

10018

10017

10009

10008

10007

10006

10005

10004

10003

10002

10001

September 25, 2006

10015

10014

10013

10005

10019

10018

10017

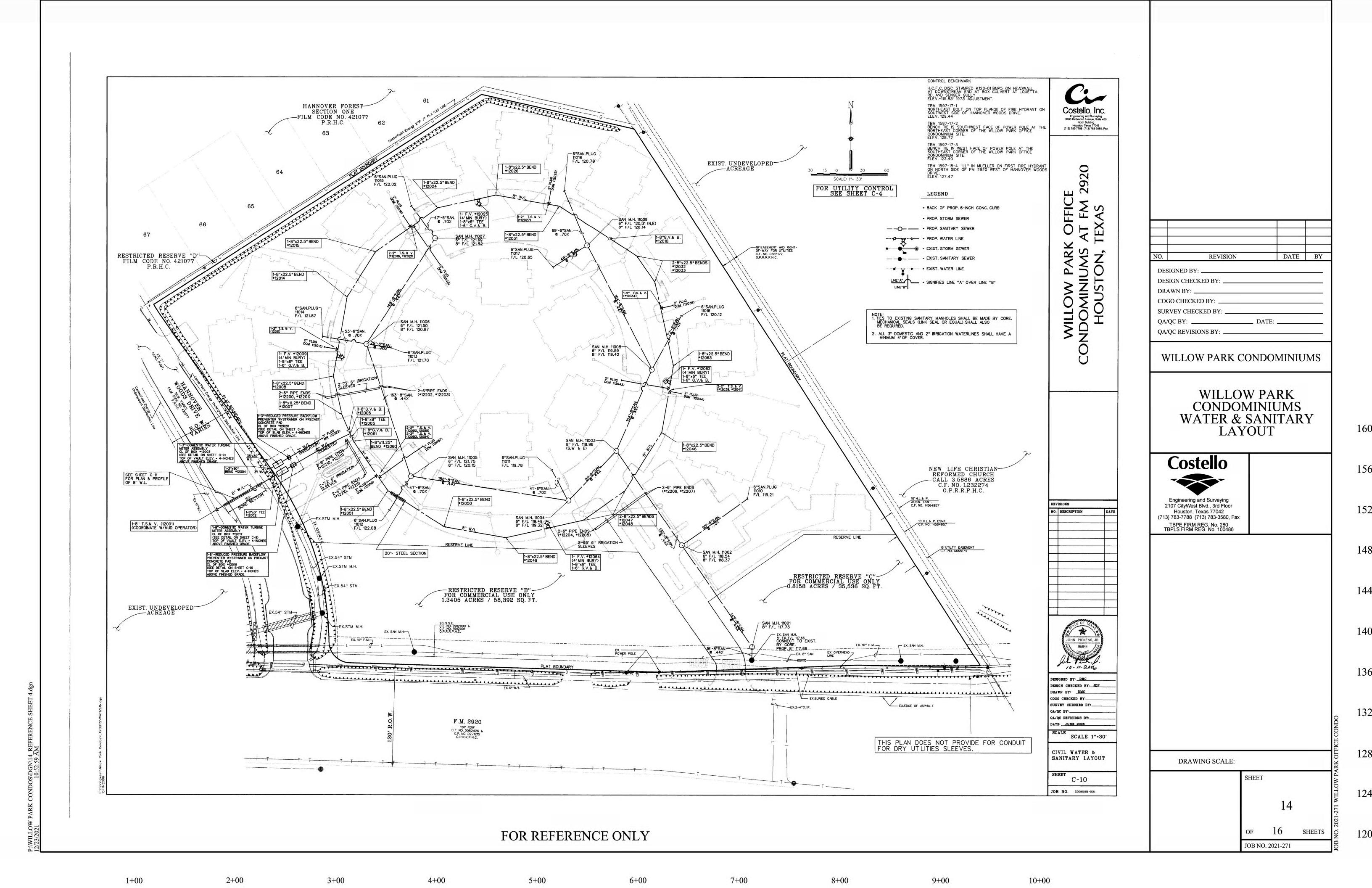
10002

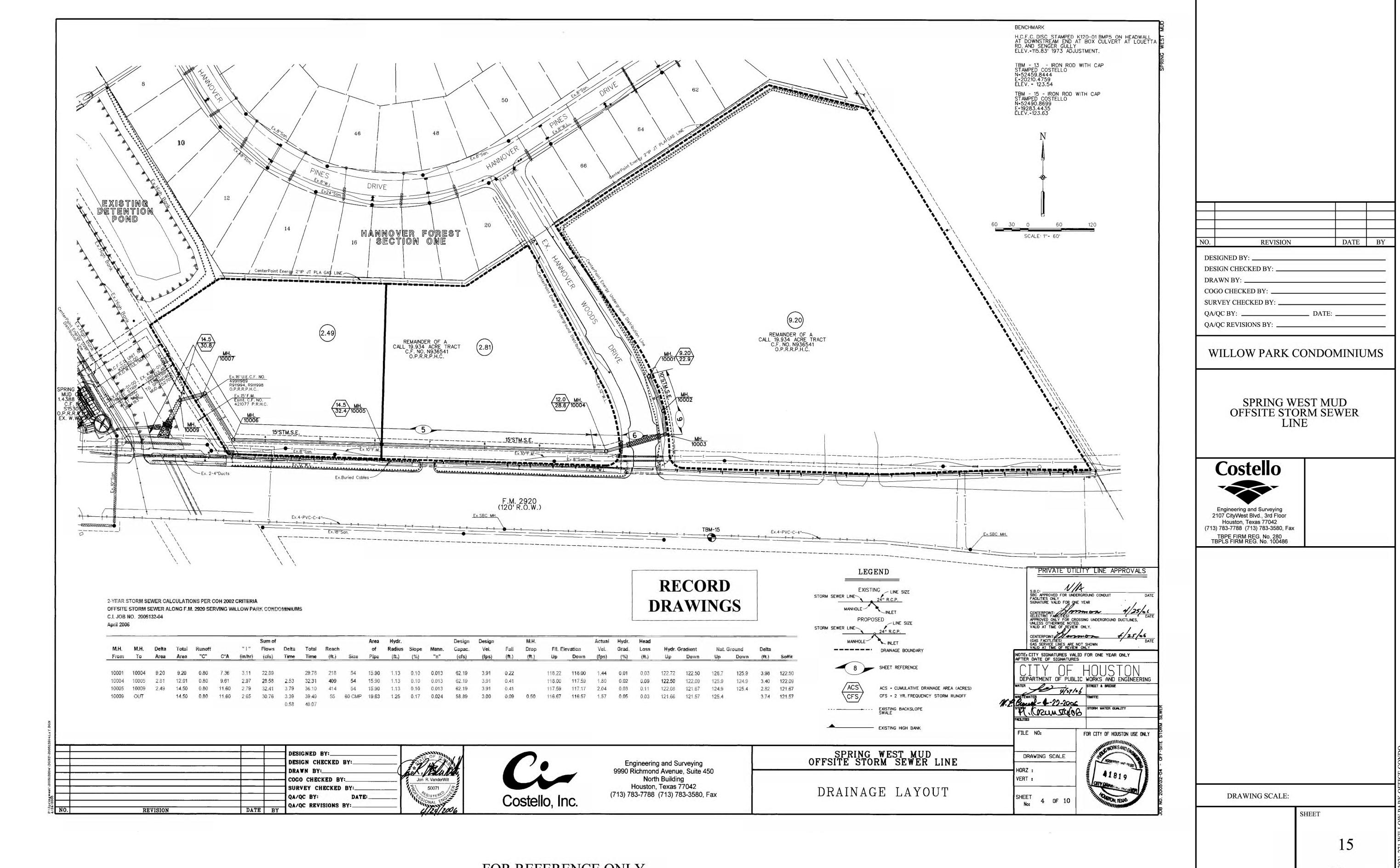
10008

10007

10006

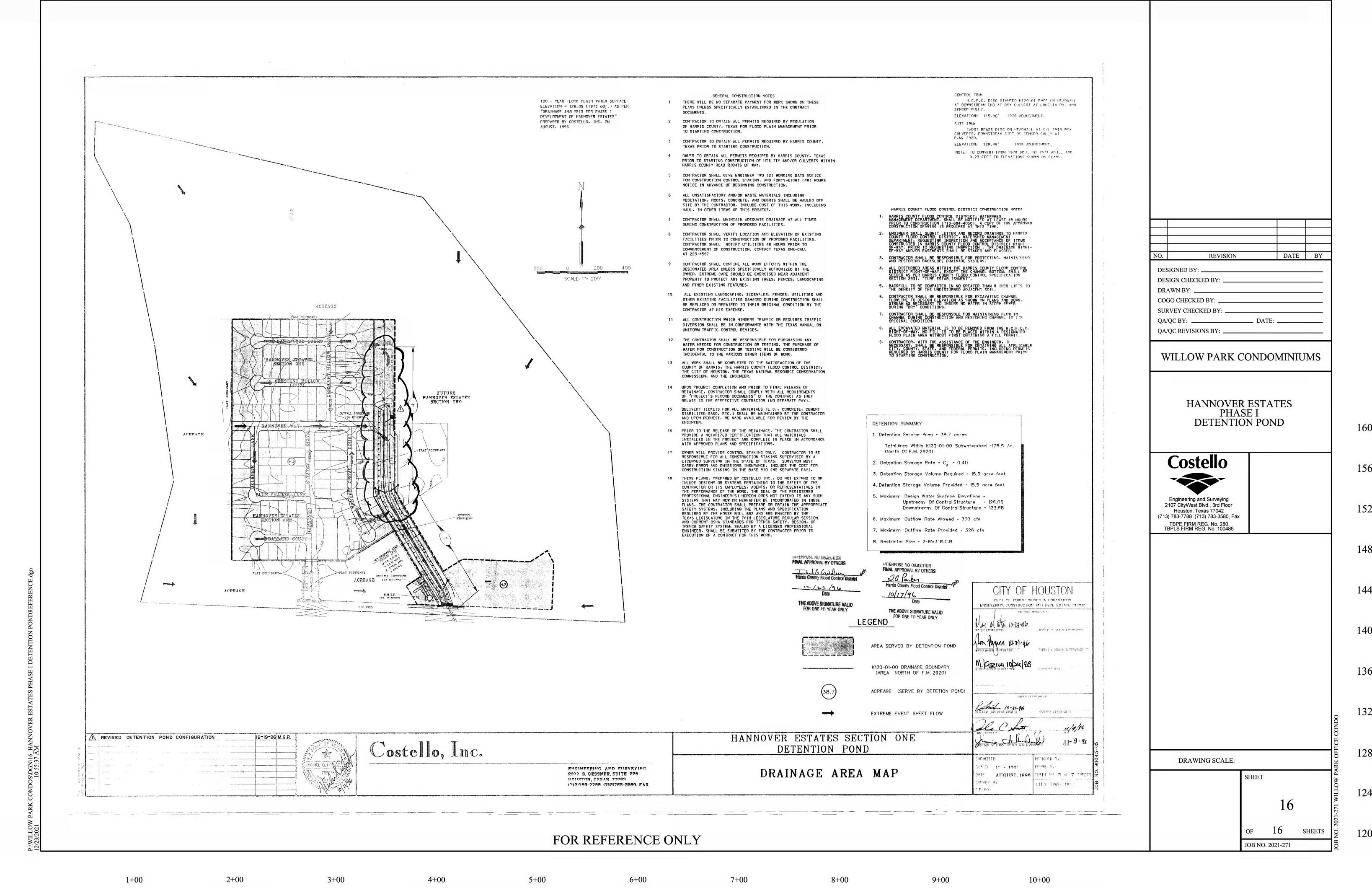
10005


10004


10003

10002

10001


10100

FOR REFERENCE ONLY

16 SHEETS JOB NO. 2021-271

