
David K Lee / Exclusive Right to Sell Agent Keller Williams Realty Landmark

www.skylandccmcorp.com / E: info@dkmdusa.com

Sharon Springs Resorts & Spa for SALE or Investment

233 Main Street Sharon Springs NY 13459

DAVID K LEE / Exclusive Right to Sell Agent

Keller Williams Realty Landmark Tel: 1- (646) 241-4222

Contact: info@dkmdusa.com

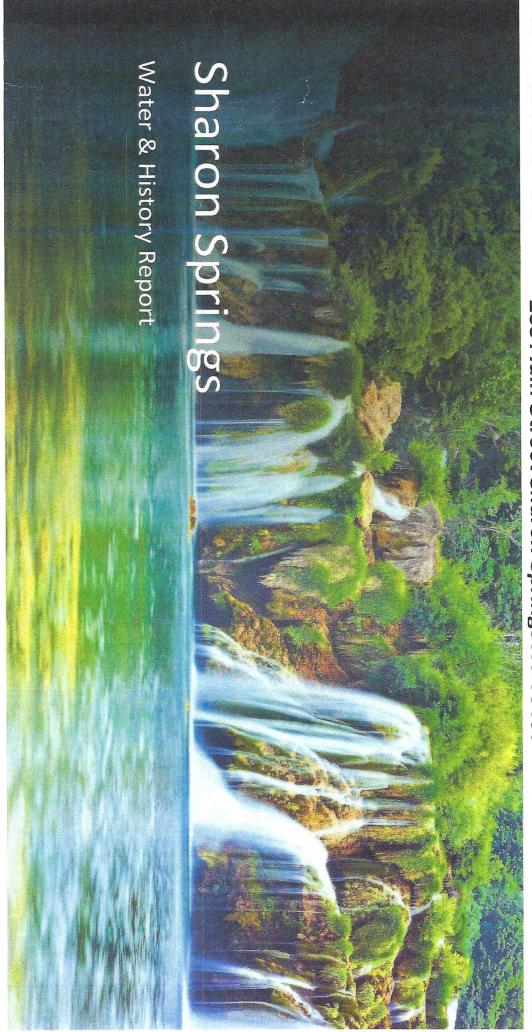
www.skylandccmcorp.com

Property Sale Price as it is: 11.5M / 100 Acres

We welcome! Buyer or Investor (새로운 사업 파트너를 환영합니다)

Joint Venture Partner (합작투자 or Buyer)

Investment Amount 10M for 50/50

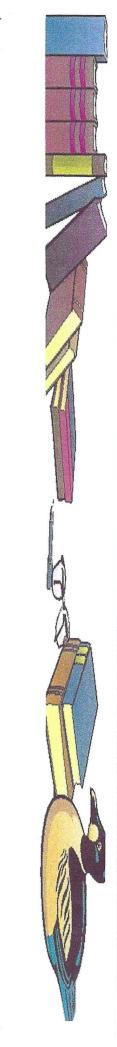

Immigration Investor (이민 투자 가능함)

DAVID K LEE / Exclusive Right to Sell Agent

Keller Williams Realty Landmark www.skylandccmcorp.com

Sharon Springs Resorts & Spa for SALE or Investment

233 Main Street Sharon Springs NY 13459


FOR SALE or INVESTMENT

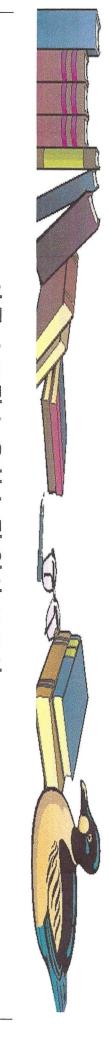
Sale Price: 11.5 M as it is / 100 Acres

Investment Amount 10M for Partnership 50/50

1-646-241-4222

E: info@dkmdusa.com

Sharon Springs Water and History Report


INTRODUCTION

United States here at Sharon Springs. most advanced European methods of using sulphur water. These methods were first introduced into the with rooms for inhaling sulphur steam or gases. The Inhalation Bathhouse was designed for practicing the In 1884, Dr. Alfred W. Gardner, after touring Europe's leading spas, returned to build the Inhalation Bathhouse,

Sharon Springs, the Adler, was completed. It had its own bathing facilities Street with accommodation for 5,000 treatments daily. The following year, the last large hotel to be built in as fashionable. By the turn of the century, Sharon Springs was developing its identity as a Jewish resort Sharon Springs was beginning to lose its appeal to this group because they no longer considered mineral baths resort, but a new, modern facility was needed. On June 1, 1927, the new Imperial Bathhouse opened on Main Over the next several years, growth was maintained at a more moderate rate. The spa continued as a bustling health spa. At first, it attracted wealthy gentiles who made their rounds of summer resorts. By the 1890's It should be noted that the patronage of Sharon Springs has changed several times during its existence as

end to the luxurious environment of the spa. many suspicious hotel fires during the 1930's. The Pavilion Hotel was torn down in 1941, bringing an abrupt Construction nearly came to a standstill during the depression as the number of guests declined. There were

water spa with a small clientele of primarily Hasidic and Russian Jews. visitors easier access to the resort. With the advent of the automobile, people enjoyed the freedom of steamer from New York City to Albany and transferred to stagecoaches, and later trains, for the last part of the reparation pact, paid for prescribed treatments at the mineral baths for former concentration camp victims. Since the 1950's, the resort has declined steadily. Today, Sharon Springs continues to operate as a mineral providing their own travel arrangements. Many city dwellers also later relied on the Greyhound Bus Lines. trip to Sharon Springs. When the D & H Railroad built a spur through Sharon in 1870, it gave Transportation systems dictated the pulse and health of Sharon Springs economy. Early travelers came by After World War II, the Village experienced a brief rejuvenation. The German government, as part of the

샤론 스프링스 온천수 및 역사 보고서

목욕탕은 유황수를 사용하는 가장 진보된 유럽식 방법을 연습하기 위해 설계되었습니다. 이러한 방법은 샤론 스프링스에서 처음으로 미국에 소개되었습니다 1884 년, 알프레드 W. 가드너 박사는 유럽의 주요 온천들을 방문한 후 유황 증기나 가스를 흡입할 수 있는 방이 있는 흡입 목욕탕을 건설하기 위해 돌아왔습니다.

스프링스는 유대인 휴양지로서의 정체성을 확립해 나갔습니다 유치했습니다. 1890 년대에 이르러 샤론 스프링스는 더 이상 미네랄 온천을 유행으로 여기지 않는 이방인들에게 매력을 잃기 시작했습니다. 세기가 바뀌면서 샤론 샤론 스프링스는 건강 스파로서 운영되는 동안 이용객이 여러 차례 바뀌었다는 점에 유의혜야 합니다. 쳐음에는 여름 휴양지를 순회하는 부유한 이방인들을

6월 1일, 메인 스트리트에 하루 5,000 건의 트리트먼트를 수용할 수 있는 새로운 임페리얼 배스하우스가 문을 열었습니다. 이듬해에는 샤론 스프링스에 지어진 <u>0</u> +0+ 마지막 대형 호텔인 애들러가 완공되었습니다. 호텔 자체의 목욕 시설도 갖추고 있었습니다 ΓŪ 동안 성장은 비교적 완만한 속도로 유지되었습니다. 스파는 활기 넘치는 리조트로 계속 운영되었지만, 새롭고 현대적인 시설이 필요했습니다. 1927 년

대공황 시기에는 투숙객 수가 감소하면서 공사가 거의 중단될 뻔했습니다. 1930 년대에는 의심스러운 호텔 화재가 여러 건 발생했습니다. 파빌리온 호텔은 1941 년에 철거되면서 스파의 호화로운 분위기는 갑작스럽게 사라졌습니다

지불했습니다 제 2 차 세계 대전 -101 빌리지는 잠시나마 활기를 되찾았습니다. 독일 정부는 배상 협정의 일환으로 강제 수용소 희생자들을 위해 미네랄 온천에서 처방된 치료 비용을

마지막 대형 호텔인 애들러가 완공되었습니다. 호텔 자체의 목욕 시설도 갖추고 있었습니다 월 1 일, 메인 스트리트에 하루 5,000 건의 트리트먼트를 수용할 수 있는 새로운 임페리얼 배스하우스가 문을 열었습니다. 이듬해에는 샤론 스프링스에 지어진 몇 년 동안 성장은 비교적 완만한 속도로 유지되었습니다. 스파는 활기 넘치는 리조트로 계속 운영되었지만, 새롭고 현대적인 시설이 필요했습니다. 1927 년

철거되면서 스파의 호화로운 분위기는 갑작스럽게 사라졌습니다 대공황 시기에는 투숙객 수가 감소하면서 공사가 거의 중단될 뻔했습니다. 1930 년대에는 의심스러운 호텔 화재가 여러 건 발생했습니다. 파빌리온 호텔은 1941 년에

제 2 차 세계 대전 후, 빌리지는 잠시나마 활기를 되찾았습니다. 독일 정부는 배상 협정의 일환으로 강제 수용소 희생자들을 위해 미네랄 온천에서 처방된 치료 비용을 교통 시스템은 사론 스프링스 경제의 활력과 활력을 좌우했습니다. 초기 여행객들은 뉴욕시에서 올버니까지 증기선을 타고 왔고, 샤론

쉽게 접근할 수 있게 되었습니다. 자동차가 등장하면서 사람들은 스스로 여행 계획을 세울 수 있는 자유를 누렸습니다. 이후 많은 도시 주민들은 그레이하운드 버스 유치하며 미네랄 워터 스파로 노선을 이용하기도 했습니다. 1950 년대 이후 리조트는 꾸준히 쇠퇴했습니다. 오늘날 샤론 스프링스는 하시드파와 러시아 유대인을 중심으로 소규모의 고객을 스프링스까지의 여정 후반에는 역마차로, 그리고 나중에는 기차로 갈아탔습니다. 1870 년 D&H 철도가 샤론을 관통하는 지선을 건설하면서 방문객들은 운영되고 있습니다 A M M M M

온천에 가장 유익한 성분은 무엇일까요?

온천에서 가장 유익한 성분은 원하는 치료 효과나 건강 효과에 따라 달라질 수 있습니다. 황산염(Sulfate), 아황산염(Sulfite), 황화물(Sulfide) 각각의 역할은 다음과 같습니다.

황산염 (5042-): 가장 유익함

- 온천에서의 역할: 황산염은 온천에서 흔히 발견되며, 치료 효과로 잘 알려져 있습니다. 마그네슘 황산염이나 칼슘 황산염이 포함된 황산염 함유 물은 다음과 같은 효과가 있다고 여겨집니다:
- 습진이나 건선과 같은 피부 질환 완화.
- 간해독 작용 촉진.
- 혈액 순환 개선 및 염증 감소.
- 관절 및 근육 통증 완화.
- · 온천의 예: 앱솜 소금()은 황산염 화합물로, 스파 치료에 자주 사용됩니다.

Temple Sulfate heated to 140 - 1520 -		1380 - 1510	1650 1490 1500 1490	2015 2016	listory H2H St. Peter Phoenix Hospital Lab
-	10 designation of the state of	1490		2016	Crawford Bowman
-	Taran distribution of the state	1440	1440	2024	Bowman

아황산염 (so32-): 일반적으로 뎔 유익함

온천에서의 역할: 아황산염은 안정성이 낮아 자연 온천에서 많이 발견되지 않습니다

황화물 (S2-): 잠재적으로 유익함

- 온천에서의 역할: 황화물은 많은 자연 온천에서 나는 특유의 유황 냄새(썩은 달걀 냄새)를 유발하며,다음과 같은 건강 효과가 있다고 알려져 있습니다:
- 피부 질환 개선, 관절염 통증 완화, 심신 이완 촉진
- 천연 항균제로 작용 가능

Mineral Concentration per Resort	Sulfate	Sulfite	Sulfide	Magnesium	Calciu
Sharon Springs	1490	18	18	363	773
Beppul (Japan)	343.3	0	0.1	18.5	0.6
Tukioka (apan)	485	0	11.4	29	70
Kusatsu (apan)	606	0	8.8	34.3	0

What is the most beneficial component of a hot spring?

Sulfates, sulfites, and sulfides each have their own roles, as follows: The most beneficial components of hot springs can vary depending on the desired therapeutic or health benefits,

Sulfate (SO42-): Most beneficial

- Role in hot springs: Sulfates are commonly found in hot springs and are known for their therapeutic properties. Sulfate-containing products, such as magnesium sulfate or calcium sulfate, are believed to have the following effects:
- o Alleviates skin conditions such as eczema and psoriasis.
- o Promotes liver detoxification.
- o Improves blood circulation and reduces inflammation.
- Relieves joint and muscle pain.

		,	A STATE OF THE PARTY OF THE PAR			
Temple Sulfate heated to 140	Temple Sulfate open to air 24hr.	Well Sulfate M N M	Temple Sulfate N N 1	Year	Company	
1	1	1443	1650	1850	Nostalgia History Book	
ı		1380	1490	2006	Н2Н	
1520	1450	,	1500	2015	St. Peter Hospital	/
1	,	1510	1490	2016	Phoenix Lab	
		1490	1510	2016	Crawford	
1		1440	1440	2024	Bowman	
	1		1443 1380 - 1510 1490 1450 1520 1520	1650 1490 1500 1490 1510 1443 1380 - 1510 1490 - - 1450 - - - - 1520 - -	1850 2006 2015 2016 2016 1650 1490 1500 1490 1510 1443 1380 - 1510 1490 - - 1450 - - - - 1520 - -	Nostalgia History Book H2H H2H St. Peter Hospital Phoenix Lab Crawford 2016 Be 1850 2006 2015 2016 2016 1650 1490 1500 1490 1510 1443 1380 - 1510 1490 1490 1520 - 1520 -

C

ول

Example of a hot spring: Epsom salt is a sulfate compound that is often used in spa treatments.

Sulfite (SO32-): Generally less beneficial

Role in hot springs: Sulfites have low stability and are not found

Sulfur (S2-): Potentially Beneficial

• Role in hot springs: Sulfur dioxide is responsible for the characteristic sulfurous odor (like a rotten egg) found in many natural hot springs

It is known to have the following health benefits:

Acts as a natural antibacterial agent.

			es relaxation.	2
Kusatsi (Japan)	Tukioka ("Bpan)	Beppu (Japan)	Sharon Springs	Mineral Concentration per Resort
606	485	343.3	1490	Sulfate
0	0	0	18	Sulfite
8.8	11.4	0.1	18	Sulfide
34.3	29	18.5	363	Magnesium
0	70	0.6	773	Calcium

Crawford & Associates Engineering, P.C.

WATER QUALITY PARAMETERS (DRAFT)

All results provided in mg/L. or as noted. Results in **bold** exceed designated guidance levels.

PARAMETER	DOH PART 5,		SAMPLE IDENTIFICATION	NTIFICATION	
	[SUBPART 5-1]	SULPHUR SPRING #1	SULPHUR SPRING #1 SULPHUR SPRING #2 MAGNESIUM SPRING EYEWASH SPRING	MAGNESIUM SPRING	EYEWASH SPRIN
	mg/L (Unless Otherwise Indicated)				
HARDNESS (CaCO3)	ā	1680 mg/L	1670 mg/L	1610 mg/L	1630 mg/L
ALKALINITY-CaCO3	N.	215 mg/L	232 mg/L	226 mg/L	222 mg/L
CHLORIDE	250	33.2 mg/L	36.00 mg/L	16.5 mg/L	21.6 mg/L
CHORINE RESIDUAL	0.2	<0.02 mg/L	<0.02 mg/L	<0.02 mg/L	<0.02 mg/L
COLOR, APPARENT	15 CU	V3 I>	NO 12	-1 CU	<100
CORROSIVITY	N.	Negative	Negative	Negative	Negative
LANGELIER INDEX	NE .	o.854 pH units	0.0895 pH units	1.10 pH units	1.03 pH units
FLUORIDE	2.2	1.01 mg/L	1.00 V	1.05 mg/L	0.97 mg/L
FREE CHLORINE	<=0.4	<0.02 mg/L	<0.02 mg/L	<0.02 mg/L	<0.02 mg/L
NITRATE AS NITROGEN	10	<0.05 mg/L	<0.05 mg/L	<0.05 mg/L	<0.05 mg/L
ODOR AT 60 DEGREES C 1	3 Units	.N.O.T 04	40 T.O.N.	40 T.O.N.	2 T.O.N.
Ph	6.5-8.5 SU	7.68 pH units	7.69 pH units	7.91 pH units	7.84 pH units
SULFATE 1	250	1510 mg/L	1490 mg/L	1310 mg/L	1400 mg/L
SULFIDE	NE	4.94 mg/L	5.05 mg/L	0.59 mg/L	0.04 mg/L
TOT, DISS, SOLIDS 1	500	2400 mg/L	2400 mg/L	2200 mg/L	2300 mg/L
TURBIDITY	5 NTU	UTN 02.0>	0.2 NTU	0.32 NTU	0.32 NTU

Guidance levels based on NYSDOH Drinking Water Regulations Part 5, Subpart 5-1 Public Water Systems

ND = Not Detected NA = Not Analyzed/ Not Applicable NE = Not Established D= Results for Dilution U= Analyzed for but not detected

Exceeds Secondary Goal

Blue, bold and shaded indicates exceedance of applicable regulatory criteria

T.O.N. - Threshold Odor Number

C&A Job # 4678.00

Bournay Consulting Ment Email: proortung & barren con Anorthma (B) bownen com AES Sample Client Sample Identification & end Report to: J. Half Bourners Moll Well Mell Location Address: AMER Spreat Troy NY

ND (1.0)	20	1440	10/15/2024	Temple Spring
18.0	18.0	1490	11/17/2006	Temple Spring.
0.16	15	1440	10/15/2024	Well Spring
0.89	1.5	1380	11/17/2006	Well Spring
Sulfide (mg/L)	Sulfite (mg/L)	Sulfate (mg/L)	Sample Date	Sample Location Sample Date Sulfate (mg/L) Sulfite (mg/L) Sulfide (mg/L)

Temple

5~1Fate

5-1Pate Sulfide

Analysis

Custody Seal Intad: Y / N 10=Other	1=H ₂ SO ₄ pH<2 2=HNO ₃ pH<2 3=HCl pH<2 4=Na ₅ S ₂ O ₃	Sample Temperature Property Preserved(Y) / N Received Within Holding Amblent Chilling Beaun 0=None 5=NH-LC Times: CY / N	Received for Laboratory by: Date Polinquished by: (Signature) Date Polinquished by: (Signature) Polinquished by:	Recoived by: (Signature) Date	Tollinquished by: (Signature) Received by: (Signature) Date	Turnaround Time Requested: 1 Day 2 Day 3 Day 5 Day Standard NOTE: Samples received after 3:30pm are considered next business day.
		hived Within Hole Times: (Y / N	llybe			
		olding	Time 1 10.29	Time	Time	

Environmental Laboratories, Inc. 587 East Middle Tumpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report
August 12, 2016

FOR: Attr: Ms Nelissia Pentz Crawford & Associates Eng., P.C 4411 Route 9 Suite 200 Flanders Bidg Hudson, NY 12534

Laboratory Data Collected by: Received by: Analyzed by: Custody Information see "By" below 두 좋 <u>Date</u> 08/03/16 08/03/16

Time 10:00 17:33

Water Source Spring
Chlorinated: No Field Residuel Chlorine.

Customer: Kevin Lee
Owner Kevin Lee
Semple Loc: Sharon Springs Resorts
Sample Pt: sulfur spring existing water

Location Code: CRAWFORD
Rush Request: Standard
P.O.#: 4678.0

Sample Information

DRINKING WATER

SDG ID: GBN85845 Phoenix ID: BN85845

Project ID: Client ID:

4678.00 SUPHUR SPRING #1

Parameter	Result	PP	믿	Units	MCF DW	Sec	Sec Goal Date/Time	Вy	By Reference	
Hardness (CaCO3)	1680	0.1		ng/L			08/09/16		E200.7	
Alkalimity-CaCO3	215	20.0		ng/L			08/04/16	RRJEG	RR/EG SM2320B-97	
Chloride	33.2	3.0		mg/L		250	08/04/16	BS/GD E300.0	E300.0	
Chlorine Residual	< 0.02	0.02	**	mg/L	4		08/03/16 17:00	0	SM4500CI-G-00	-
Color Apparent	^1	_		Cotor Units		5	08/03/16 20:30	Энжов	DH/KDB SM2120B-01	
Corrosivity	Negative		-	PosiNeg			08/03/16	BOYHO	DH/KDB SW846-Corr	
Fluoride	1.01	0.20	ю	nig/L	4		08/09/16	BS/EG E300.0	E300.0	
Free Chlorine	< 0.02	0.02		mg/L	4		08/03/16	0	SM4500CIG-00	-
Langelier Index	0.854		-	pH units			08/05/16	KC1	SM2330B-05	-4
Nitrate as Nitrogen	< 0.05	0.05		mg/L	10		08/04/16 05:57	BS/GD E300.0	E300.0	
Odor at 60 Degrees C	40		-	T.O.N.		ω	08/03/16 18:20	0	SM2150B-97	
*** Odor at 60 Degrees C exceeds Secondary Goal ***	s Secondary	Goal ***								
PH	7.68	0.10	-	pH Units		6.5-8.5	6.5-8.5 08/04/16 05:57	RR/EG	RR/EG SM4500-H B-00	***
Sulfate	1510	150	50	mg/L		250	08/09/16	8S/EG E300.0	E300.0	
*** Sulfate exceeds Secondary Goal ***	oal ***									
Sulfide	4.94	0.15	ij.	mg/L			08/04/16	GD	SM4500D/E376.2-00	
Tot Diss. Solids	2400	20	2	mg/L		500	08/05/16	X	SM2540C-97	
*** Tot. Diss. Solids exceeds Secondary Goal ***	ondary Goal	:								
Turbidity	< 0.20	0.20	-	NTU		5	08/03/16 20:22	×	SM2130B-01	
Silver	< 0.001	0.001	-	mg/L		0.1	08/04/16	Ę	E200.7	
Arsenic	0.0056	0.0005	**	mgiL	0.01		08/05/16	RS	E200.9/SM3113B-10	
Barium	< 0.001	0.001		mg/L	N		08/04/16	K	E200.7	
Calcium	565	0.50	100	mg/L			08/05/16	핒	E200.7	

Cadmium Chromium Copper fron Mercury

< 0.001 < 0.001 < 0.002 < 0.002 < 0.0002

0.001 0.001 0.002 0.01 0.0002

0.3 08/04/16 08/04/16 08/04/16 08/04/16

LK E200.7 LK E200.7 LK E200.7 LK E200.7 RS E245.1

ST. PETER'S HOSPITAL ENVIRONMENTAL LABORATORY

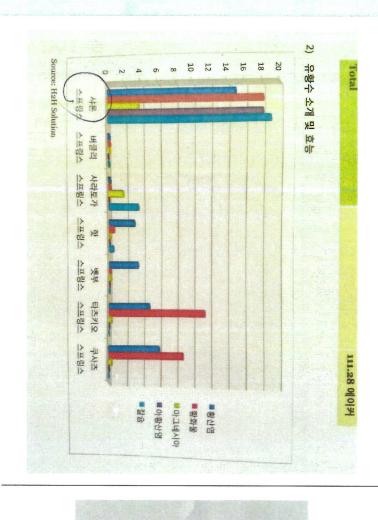
21 Grand Ave Suite 603 Kevin Lee

Palisades Park ,NJ 07650

Sample ID: AU13165
Date Received: 09/15/2015 Printed On 10/26/2015 Page 1 of 3

YourRef Collect Date 09/15/2/ Collect Time 00, 00 Collected by KEVINI Recorpt Temp 14 C s Potability Yes Collected Time 7 Cs
09/15/2015 00:00 KEVIN LEE 14 C see note 1

	_	abor	Laboratory	Keport			Analysis Data
Test	Result	MCL	Qualifiers	Units	Wethon need	Miniyati	Analyst Allarysis Date
Color	s	15	~1	UNITS	SM 18-21 2120B	BPC	9/15/2015
Turbidity	0.50	G1	-1	UTU	EPA 180 1 Rev2.0	BPC	9/16/2015
Odor	Sulfide/100	G	×	TON	SM18-20 2150B	BPC	9/15/2015
er i	6.3		HZ	Std. units	SM18-21 4500-H B	BPC	9/15/2015
Alkalinity, Tot(CaCO3)	218		AT	mg/L	SM23208	MBF	9/16/2015
Nitrale as N	0.09	10.0	-4	mg/L	EPA300.1	2	9/16/2015
iron	<0.05	0.30		mg/L	SM3111B	SSN	9/22/2015
Manganese	0.03	0.30		mg/L	SM3111B	SSN	9/22/2015
Chloride	33	250		mg/L	EPA300.1	2	9/16/2015
Sulfate	1500	250	×	mg/L	EPA300.1	2	9/16/2015
Sodium	22.2		\$	mg/L	SM3111B	SSN	9/24/2015
Fluoride	0.80	22		mg/L	EPA300.1	ڄ	9/16/2015
Arsenic	0.0044	0.010	₹	mg/L	SM3113B	BP	9/17/2015
Barium	0.0054	2.0		mg/L	SM31138	SUB.	10/6/2015
Cadmium	<0.0010	0.01		mg/L	SM3113B	SUB	10/14/2015
Chromium	<0.0050	0.05		mg/L	SM3113B	SUB	10/14/2015
Соррег	<0.02	3.3		mg/L	SM3111B	NSS	9/23/2015
Lead	<0.001	0.015		mg/l	SM3113B	BP	9/22/2015
Magnesium	63.0			mg/L	SM 18-21 3111B	SSN	9/28/2016
Mercury	<0.0002	0.0020		mg/L	EPA245.1 Rev.3.0	SUB.	10/1/2015
Potassium	1.57			mg/L	SM 18-21 31118	NSS	10/8/2015
Selenium	0.002	0.050	š	mg/L	SM3113B	SUB*	10/13/2015
Silver	<0.0100	0.10		mg/L	SM3113B	SUB*	10/14/2015
Zinc	<0.01	5.0		mg/L	SM3111B	NSS	10/6/2015
Corrosivity Result@20C	-0.28			@20C	SM 18-19 2330	CHR	10/6/2015
Chlorine Residual Free	<0.05		HZ	mg/L	SM4500 CIF	CHR	9/16/2015
Chlorine Residual, Total	<0.05		ZH	mg/L	SM4500 CIF	CHR	9/15/2015
Sulfide	6.8			mg/L	SM4500-S E	86	9/17/2015
Dissoived Solids, Total	2570	500	×	mg/L	SM 18-21 2540C	ВР	9/17/2015
	1460				COPECNS	N D D	074770046



CHEMICAL ANALYSIS OF SHARON SPRINGS WATERS

By Frederick W. Schwartz, Ph. D. - Rensselaer Polytechnic Institute, Troy, N. Y. HYPOTHETICAL FORM OF COMBINATION IN PARTS PER MILLION

Temperature of water 3 Deg. C.

	Ammonium Chloride. Potassium Chloride. Sodium Chloride. Lithium Chloride. Sodium Sulphate. Magnesium Sulphate. Calcium Sulphate. Calcium Sulphite. Calcium Hydrosulphide. Calcium Hydrosulphide. Calcium Phosphate. Lron and Aluminum Oxides. Silica. Total Solids. Carbon Dioxide Gas. Cubic centimetrs per liter. Hydrogen Sulphide Gas. Cubic centimeters per liter. Bacteria per cubic centimeter. Bacteria per cubic centimeter.	Temperature of Water 9 Deg. C
花安存務	1.1 8.5 0.0 8.5 1287.4 83.9 772.9 0.0 2530.5 11.3 3200 None	White Sulphur
well spring	0.7 33.1 0.0 27.8 223.1 141.2 1443.1 1.6 0.5 450.9 Trace 2.4 19.0 2343.4 9.6 None	Galcic Calcic
JAN WALL	0.3 4.0 0.0 17.0 69.9 219.1 1446.1 0.5 0.5 0.6 0.6 0.6 0.7 1.4 0.0 1.4 0.0 2217.1 1.6 0.3 3800 None	Eye Water

AMERIE OUR

				^	
Yellow Stone Springs	Dogo Springs	Bethoo Springs	Tsukdoka Springs (Japan's Highest Suttur Spring)	Ksusatsu Springs (Japan's Best Spring)	Sharon Springs
301	18	343	485	606	Sulphate 1490
0	0	0	0	0	Sulphite 18
0	15	0.87	11.4	8.8	Sulphide 18
830	135	0.6	10	0	Sulphide Garbusasa Magnesisi 18 773 363
12	4	18.5	29	343	363

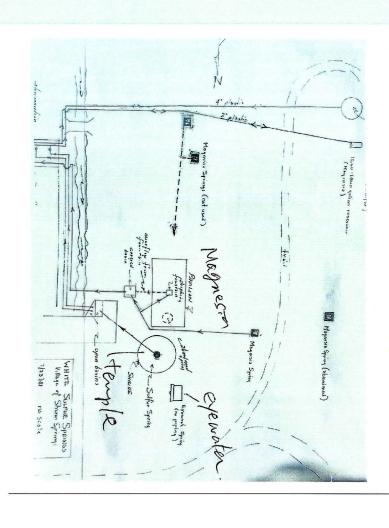
Eye water.

1878 3x1/2

The "SHARON SANATORIUM" consists of the Celebrated White Sulphur Spring and Bathing Establishment. A DIPLOMA AND SILVER MEDAL AWARDED THE "SHARON SANATORIUM"
AT THE PARIS EXPOSITION IN 1900.

SHARON SPRINGS, N. Y.

2 mg gas - two treatment.


Hotmad Stan treetnet

(1624a MAM) The

SCHOHARIE

Constains information on piping at side

Department of Health

SCHOHARIE, NEW YORK 12157 . TEL: 518/295.8174, 7265

MEMORANDUM

DATE: 8-14-81

TO: File

FROM: Carl J. Stefanik, P.E. Administrator

SUBJECT: White Sulfur Springs Village of Sharon Springs

The water supplies serving the White Sulfur Springs, Village of Sharon Springs, consist of the Byewash, Sulfur, and the Magnesia springs.

Eyewash Spring .

The Eyawe th Spring consists ... a single basin and overflow with no piping or distribution system. The basin is concrete, set in the base of rock, with a cover consisting of wooden beards. It's yield at peak flow is estimated to be slightly less than 20 gpm.

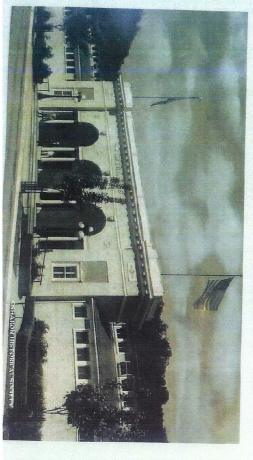
Sulfur Spring

The Sulfur Spring emanates from a deep cavern in rock directly below the "shrine", its diameter is about 10', the depth unknown, and has an estimated yield of 96 gpm. Water from the spring flows to an open basin part of which is located within a section of the bathhouse. From the portion of the bathhouse is the bath possed outside the bathhouse water is pumped, through the pumphouse, two 40-45 gpm pumps to the bathhouse water is pumped. Through the pumphouse two 40-45 gpm pumps to the bathhouse, sulfur baths in the Adlay fotel, and/c two 40-45 gpm concrete reservoir (alleged to be 365,000 gallon capacity, 20' deg partially underground).

The pumps are usually used separately and/or alternately depending on demand. The 45 gpm Marlow pumps to the reservoir; the 40-45 gpm Marcora pump to the Adler. There are no controls on the reservoir lewelrwhen it overflow the pumps are shut off.

Water is used for drinking only at the shrine where it is dipped from the bubbling spring.

The scarce of the Magnesia Spring is located on the hill directly behing the pavilion, it flows by gravity to the drinking fountain and a covered concrete basin. Overflows from the fountain goes into the concrete basin. From the basin the water is pumped, through the pumphouse, to the bathhouse or the bathouse four the part of the pathhouse or the bathouse four the part of the pathhouse or the part of the pathhouse or the pathouse four the pathhouse or the pathouse four parts of the pathhouse or the pathouse four parts of the pathhouse or the pathhouse four parts of the pathhouse or the pathhouse of the pathhouse of the pathhouse or the pathhouse of the pathhou


Imperial Bath House Renovation Project - Historical Photos

