1244 Crosstown Blvd NE Ham Lake MN 55304 Office: (763) 434-3915 service@lashinskiseptic.com

Permit Number: 2024-00109

APPROVED PLAN

By Chris Uebe (CK) On 5/29/24

February 5, 2024

LCI Landscapes Tim O'Connor 13960 Lake Drive Columbus MN 55025

The onsite sewage treatment system at 13960 Lake Drive in Columbus is designed for a type I 2300 sq. ft. office building with 2 proposed bathrooms in accordance to the Minnesota Pollution Control Agency (M.P.C.A.) chapter 7080 and local ordinances. The maximum daily flow for this system was determined by 2300 sq. ft. at .18 GPD/sq. ft., or a maximum daily flow of 415 gallons per day (GPD). For a safety factor, along with possibly future expansion, the system is design for 600 GPD.

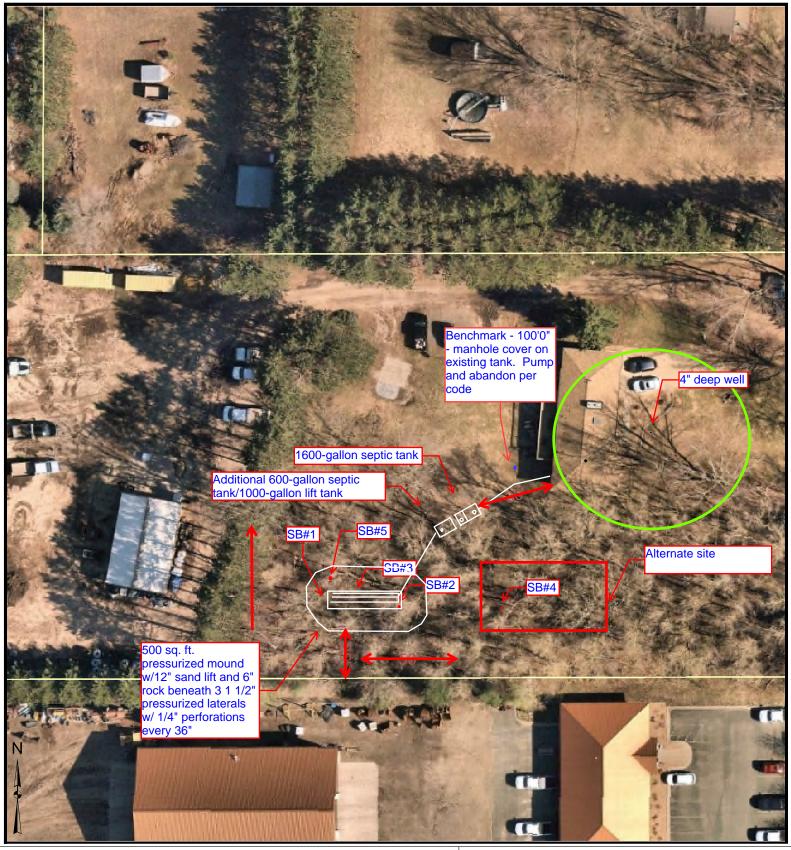
The existing tank must be pumped and abandoned. A new 1600-gallon septic tank must be installed as well as a 600-gallon septic tank and 1000-gallon pumping chamber to lift the effluent to the proposed mound location. The tanks must be supplied by an MPCA certified supplier and must be registered tanks. The manhole covers on each tank must be brought to the surface for future maintenance and must be insulated. All plumbing in and out of the tanks must be 4" Schedule #40 PVC. If the tanks are to be installed with less than 24" of cover, they must be insulated to an R-value of 10. The tanks cannot be installed with greater than 4' of cover. An outlet filter is recommended in the outlet of the second tank.

A pressurized mound system should be installed in the area of soil tests #1 through #5. The soils in this area are classified as Zimmerman fine sand with redoximorphic mottling observed a depth of 42" at the upslope edge of the rockbed. A pressurized mound system will be required with a minimum of 12-inches of sand installed beneath the upslope edge of the rockbed, with 6-inches of ³/₄"-1 ¹/₂" rock beneath three 1 1/2" laterals with 7/32" perforations drilled every 36". The system should be installed as drawn on the attached site plan, must be at least 10-feet from the property lines and 50-feet from the well. The entire rockbed must be installed level and the materials clean as per MPCA chapter 7080. It is the homeowner's responsibility to establish ground covering over the proposed system to prevent freezing and/or soil erosion. The installer is to verify that the mound is installed on the contour. Some trees will need to be removed prior to construction.

A deep well is located to the front of the house greater than 50-feet from the proposed SSTS location. No neighboring wells could be located within 100-feet of the proposed SSTS locations, however it is the homeowners responsibility to locate and disclose any wells within 100 feet of the proposed mound and tank locations prior to installation.

The power supply and switches for the lift pump must be located outside the manhole and pumping chamber in a weatherproof enclosure. A warning device must be installed with both audible and visual alert in case of pump failure. The pressurized force main from the pump to the treatment area must be sloped to allow for drain back.

Keep all heavy equipment off the proposed treatment area before and after construction. The treatment area should be marked off before construction. Failure to protect the site of the proposed treatment area can result in this design being invalid and the system will need to be relocated.


Nothing other than human waste, toilet tissue, laundry, showers, water softeners, etc. should be disposed into the septic tanks. **Iron filters must be diverted out of the system**. Garbage disposals are not recommended due to adding more solids and fine solids passing through the tanks and into the treatment area. Excessive amounts of soaps, cleaning agents, and chlorine may kill the bacteria needed to treat septic effluent. Limit the use of anti-bacterial soaps. We recommend using liquid laundry and dish soap instead of powder. **Additives should not be used.**

Each tank must be inspected by a state licensed professional one year after construction, then at least once every three years thereafter. With proper installation and maintenance, this system should have no problem treating effluent effectively.

Sincerely,

Ryan Lashinski

Anoka County Parcel Viewer

Parcel Information: 33-32-22-21-0004 13960 LAKE DR NE COLUMBUS MN 55025

Approx. Acres: 6.13095753 Commissioner: JEFF REINERT

Owner Information: ESCAPE PROPERTIES LLC 125 COUNTY ROAD F E VADNAIS HTS MN

55127

Site slope - 5%, South to North

APPROVED **PLAN**

Anoka County GIS 1:600 Date: 2/4/2024

University of Minnesota

OSTP Soil Observation Log

Project ID: #REF! v 04.06.2017 Client/ Address: 13960 Lake Drive Columbus Legal Description/ GPS: ✓ Outwash ☐ Lacustrine ☐ Loess ☐ Till ☐ Organic Matter ☐ Alluvium ☐ Bedrock Soil parent material(s): (Check all that apply) ☐ Summit ☑ Shoulder ☑ Back/Side Slope ☐ Foot Slope ☐ Toe Slope ☐ Flat Landscape Position: (check one) Slope shape Linear, Linear Soil survey map units: ZmB Vegetation: Grass 5.0 Elevation: 102'4" Slope %: Weather Conditions/Time of Day: Sunny Date Observation #/Location: SB#1 Observation Type: Auger I------ Structure------I Rock Matrix Color(s) Mottle Color(s) Depth (in) Texture Redox Kind(s) Indicator(s) Frag. % Consistence Shape Grade Loamy Fine 0-8 <35% 10YR 3/4 Weak Granular Loose Sand Loamy Fine -16 <35% 10YR 4/4 Granular Weak Loose Sand Loamy Sand <35% 10YR 5/4 -43 Granular Weak Loose -50 Loamy Sand <35% 10YR 5/4 10YR 6/1 **Depletions** S1 Granular Weak Loose S2 10YR 5/8 Concentrations **APPROVED PLAN** Comments Redoximorphic mottling after 43". I hereby certify that I have completed this work in accordance with all applicable ordinances, rules and laws. #REF! L4266 Ryan Lashinski (Designer/Inspector) (Signature) (License #) (Date)

Additional Soil Observation Logs

UNIVERSITY OF MINNESOTA
ONSITE
SEWAGE
TREATMENT
PROGRAM

Cli	ent/ Address:	,	13960 La	ke Drive	Columbu	ıs	Legal Desc	cription/ GPS:		#REF!	
Soil parent n	naterial(s): (C	heck all th	nat apply)	V	Outwash	Lacustrine	e 🗌 Loess 🔲	Till 🗌 Alluv	vium 🗌 Bedi	rock 🗌 Organ	ic Matter
Landscape P	osition: (checl	k one) [Summit	☐ Shoulder	✓ Back/	Side Slope	✓ Foot Slope ☐ Toe	Slope 🗌 Flat	Slope shape		
Vegetation:		Grass		Soi	l survey r	nap units:	ZmB	Slope %:	5.0	Elevation:	102'4"
Weather Cor	nditions/Time	of Day:		•		Sunny			Date:		
Observatio	n #/Location:				SB#2			Obse	ervation Type:		Auger
Depth (in)	Texture	Rock	Matrix	Color(s)	Mottle	Color(s)	Redox Kind(s)	Indicator(s)		Structure	
Deptil (III)		Frag. %	Matrix	Cotol (3)	Mottle	Cotol (3)	Redox Killa(s)	indicator(s)	Shape	Grade	Consistence
0-6	Loamy Fine	<35%	10YR	3/4					Granular	Weak	Loose
-22	Sand Loamy Fine Sand	<35%	10YR	4/4					Granular	Weak	Loose
-45	Loamy Sand	<35%	10YR	5/4					Granular	Weak	Loose
-50	Loamy Sand	<35%	10YR	5/4	10YF	R 6/1	Depletions	S1	Granular	Weak	Loose
					10YF	R 5/8	Concentrations	S2			
Comments	Redoximorphi	ic mottling	g after 44	"							
#/l+:	on/Elevation:			CD#3	Flav. 10	4'40"		Ohaa	matica Tunca		A
#/LOCati	on/ Elevation:			3D#3	Elev. 10	1 10	1	Obse	ervation Type:		Auger .
Depth (in)	Texture	Rock Frag. %	Matrix	Color(s)	Mottle	Color(s)	Redox Kind(s)	Indicator(s)	Shape	Structure Grade	
		IIag. /0							знаре	Grade	Consistence
0-6	Fine Sand	<35%	10YR	4/4					Granular	Weak	Loose
-18	Loamy Fine Sand	<35%	10YR	5/4					Granular	Weak	Loose
-35	Loamy Sand	<35%	10YR	5/3					Granular	Weak	Loose
-40	Loamy Sand	<35%	10YR	4/3	10YF	R 6/1	Depletions	S1	Granular	Weak	Loose
							_				
Comments	Redoximorphi	ic mottling	g after 35	".							

Project ID:

#REF!

APPROVED PLAN

Additional Soil Observation Logs

UNIVERSITY OF MINNESOTA
ONSITE
SEWAGE
TREATMENT
PROGRAM

Clie	ent/ Address:		13960 La	ke Drive	Columbu	s	Legal Desc	ription/ GPS:		#REF!	
Soil parent n	naterial(s): (C	heck all th	nat apply)	V	Outwash	Lacustrine	e 🗌 Loess 🔲 -	Till	ium 🗌 Bedr	rock 🗌 Organ	ic Matter
Landscape Po	osition: (check	k one)	Summit	☐ Shoulder	☑ Back/	Side Slope	✓ Foot Slope ☐ Toe	e Slope 🔲 Flat	Slope shape		
Vegetation:		Grass		Soil	survey r	nap units:	ZmB	Slope %:	5.0	Elevation:	102'4"
Weather Con	ditions/Time	of Day:				Sunny			Date:		
Observation	n #/Location:				SB #3			Obse	rvation Type:		Auger
Depth (in)	Texture	Rock Frag. %	Matrix	Color(s)	Mottle	Color(s)	Redox Kind(s)	Indicator(s)	I- Shape	Structure Grade	I Consistence
0-6	Loamy Fine	<35%	10YR	3/4					Granular	Weak	Loose
-22	Sand Loamy Fine Sand	<35%	10YR	4/4					Granular	Weak	Loose
-40	Loamy Sand	<35%	10YR	5/4					Granular	Weak	Loose
-50	Loamy Sand	<35%	10YR	5/4	10YR	R 6/1	Depletions	S1	Granular	Weak	Loose
					10YR	2 5/8	Concentrations	S2			
Comments	Redoximorphi	ic mottling	after 40	ıı							
#/Location	on/Elevation:			SB #5	Elev. 10	1'10"		Obse	rvation Type:		Auger
Depth (in)	Texture	Rock Frag. %	Matrix	Color(s)	Mottle	Color(s)	Redox Kind(s)	Indicator(s)	I- Shape	Structure Grade	I Consistence
_											
0-6	Fine Sand	<35%	10YR	4/4					Granular	Weak	Loose
-18	Loamy Fine Sand	<35%	10YR	5/4					Granular	Weak	Loose
-35	Loamy Sand	<35%	10YR	5/3					Granular	Weak	Loose
-40	Loamy Sand	<35%	10YR	4/3	10YF	8 6/1	Depletions	S1	Granular	Weak	Loose
-50 Loamy Sand <35% 10YR 5/4 10YR 6/1 Depletions S1 Granular Weak Loose											
Comments	Comments Redoximorphic mottling after 35".										

Project ID:

#REF!

OSTP Design Summary Worksheet

University of Minnesota

Property Owner/Clien	t:	LCI Landscapes		Project ID:	v 04.06.2017
Site Address:	139	960 Lake Drive		Date:	2/5/2024
Email Address:				Phone Number:	
1. DESIGN FLOW, STRENGT	H OF WASTE, AND TANKS				
A. Residential Design Flow:	600 Gallo	ns Per Day (GPD)	Number of Bedrooms	(Residential):	
Type of Wastewater:	Other Est At-Risk	Treatment Level:	С	Select Treatment Level C for	residential septic tank effluent
Other Est. flow (select m	ethod and provide data):	☐ Measured Flow:	GPD	☐ Estimated Flow:	450 GPD
Waste strength (attach da	ata/estimate basis for Other E	st.): BOD:	125 mg/L TSS:	35 mg/L Oil&	Grease: 10 mg/L
B. Septic Tank Sizing					
1. Residential dwellings					
Min Code Required	Septic Tank Capacity:	2250	Gallons, in	2 Tanks or Compar	tments
Recommended Sep	tic Tank Capacity:	2250	Gallons, in	2 Tanks or Compar	tments
2. Other Establishments					
Waste received b	y: Gravity				
Min Code Required	Septic Tank Capacity:	600 GPD X	3 = 1800	Gallons, in 2	Tanks or Compartments
Designer Recommo	ended Septic Tank Capacity:	2250	Gallons, in	Tanks or Compar	tments
3. Effluent Screen & Alar	m (Y/N): Yes		Manufacturer/Model:	POlyLoc	P125 or larger
C. Holding Tanks Only:	Minimum Capacity: Residentia	l =400 gal/bedroom	Other Establishment = [Design Flow x 5.0, Minimum	size 1000 gallons
Minimum Code Requir	ed Capacity:	Gallons, in	Tanks	Type of High Lev	el Alarm:
Designer Recomm	ended Capacity:	Gallons, in	Tanks		
D. Pump Tank 1 Capacity (Co	ode Minimum): 0	Gallons	Pump Tank 2 Capacity	(Code Minimum):	Gallons
Pump Tank 1 Capacity (De	esigner Rec): 0	Gallons	Pump Tank 2 Capacity	(Designer Rec):	Gallons
Pump 1 29.0	GPM Total Head 1	15.4 ft	Pump 2	GPM Total Head	ft
Supply Pipe Dia. 3.00	in Dose Volume: 1	00.0 gal	Supply Pipe Dia.	in Dose V	/olume: gal
2. SYSTEM AND DISTRIBUT	ON TYPE			<u> </u>	
Soil Treatment Area Type	: Mound	Dis	tribution Type:	Pressure Distribut	ion-Level
Benchmark Reference Elevation:	100 ft	 Benchm	nark Location:	Top of manhole cover o	n existing tank
MPCA System Type:	Type I	Type of Dist	ribution Media:	Rock	
Type III/IV Details:		.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			
3. SITE EVALUATION SUMM	ARY:				
A. Depth to Limiti	ng Layer: 35 in	2.9 ft	G.	Soil Texture:	Fine Sand
B. Elevation of Limiti	ng Layer: 98'1	1"	H. Soil Hyd.	Loading Rate: 0.6	O GPD/ft ²
C. Loc. of Restrictive E	levation: SB#	1	l.	Perc Rate: >5N	NPI MPI
D. Minimum Required Se	paration: 36 in	3.0 ft	J. Soil with >3	35% Rock Fragments Prese	ent (yes/no)? No
E. Code Maximum Depth of	System: Mound in		,	% rock and layer thickness for addressing the rock fra	, amount of soil credit and any
F. Measured La	nd Slope: 5.0 %			dad assing the rock in	
Comments:					
l—————————————————————————————————————					-

OSTP Design Summary Worksheet

University of Minnesota

4.	SOIL T	REATMENT	AREA DES	SIGN SL	JMMAR'	Y								
							Tren	ch Desig	n Summa	ary				
		Dispe	ersal Area			ft ²	Sidew	all Depth			in		Trench Width	ft
		Total Lir	neal Feet			ft	Number of	Trenches				Code Maxim	num Trench Depth	in
	C	Contour Load	ding Rate			ft	Min Trenc	h Length			ft	Designer's I	Max Trench Depth	in
							Bed	d Design	Summar	у				
		Absorp	tion Area			ft ²	Depth of	sidewall			in	Code Ma	ximum Bed Depth	in
		В	ed Width			ft	Ве	d Length			ft	Designe	r's Max Bed Depth	in
							Mou	nd Desigr	Summa	ary				
		Absorption	Bed Area	50	0.0	ft ²	Ве	d Length	50	.0	ft	E	Bed Width 10.0	ft
		Absorpti	on Width	20	0.0	ft	Clean	Sand Lift	1.	0	ft	Berm Wid	th (0-1%) 8.6	ft
		Upslope Ber	rm Width	7	.4	ft [Downslope Berr	n Width	14	.0	ft	Endslope Be	erm Width 13.4	ft
		Total System	m Length	76	5.8	ft	Total Syste	em Width	31	.4	ft	Contour Loa	ding Rate 12.0	gal/ft
							At-Gr	ade Desig	gn Summ	nary				
	A	Absorption B	ed Width			ft	Absorption Be	ft System Fi			Syster	m Finished Height	ft	
	C	Contour Load	ding Rate			gal/ft	Upslope Bei	rm Width			ft	Down	slope Berm Width	ft
	E	Endslope Bei	rm Width			ft	Syster	m Length			ft		System Width	ft
					L	evel & Equal P	Distribut	ion Su	mmary					
	No. o	f Perforated	l Laterals		3		Perforation	n Spacing	3	}	ft	Per	foration Diameter	7/32 in
		Lateral	Diameter	1.	50	in	Min. Delivered	d Volume	6	3	gal	Maximum	Delivered Volume	150 gal
						Non-L	evel and Uneq	ual Press	ure Dist	ributio	on Sumn	nary		
		Elevation			Pipe V	olume/	Pipe Length	Perforat	ion Size					
		(ft)	Pipe Size	e (in)	(gal	l/ft)	(ft)	(ir	۱)	Spaci	ing (ft)	Spacing (in)		
Lateral Lateral													Minimum Deliv	ered Volume gal
Lateral														
Lateral													Maximum Deliv	ered Volume
Lateral	5													gal
Latera	6													
5.	Additio	onal Info fo	r At-Risk,	, HSW (or Type	e IV Des	sign							
A.	Calcul	ate the org	anic load	ing										
1.	Organi	c Loading to	o Pretreat	tment l	Jnit = L	Design F	Flow X Estimat	ed BOD i	n mg/L i	n the e	effluent	X 8.35 ÷ 1,000	,000	
			gpd X				mg/L X 8.35 ÷	1,000,00	0 =			lbs. BOD/day		
2.	Туре о	f Pretreatm	ent Unit B	Being In	stalled	:								
3.	Calcula	ate Soil Tre	atment Sy	stem O	rganic i	Loading	g: BOD concent	tration af	ter pret	reatme	ent ÷ Bo	ttom Area = ll	bs./day/ft²	
			mg/L X 8.	.35 ÷ 1,	,000,00	0 ÷		ft ² =			lbs./da	ay/ft²		
Comm	ents/Sp	ecial Desig	n Conside	rations	s:_		·	-						
								д,						
		I hereby ce	rtify that	I have	comple	ted thi	1 7 11 2	/ /	th all ap	plicabl	e ordina	ances, rules an	d laws.	
		Ryan	ı Lashinski	i			En 6	sks	_			L4266	02/0	5/24
	(Designer)			-	(Sig	(License #)			icense #)	(Date)				

OSTP Mound Design Worksheet ≥1% Slope of Minnesota

1. SYST	EM S	IZINO	〕 :	Project ID:						v 0	4.06.2017
A. Desig	gn Flo	ow:		60	00	GPD		TAB	LE IXa		
B. Soil I	_oadi	ng Ra	nte:	0.	60	GPD/ft ²	LOADING RATES F				
C. Dept	h to l	Limit	ing Condition:	2.	.9	ft		Treatmen Absorption	t Level C	Treatment Le	vel A, A-2, B,
D. Perc	ent L	and S	Slope:	5.	.0	%	Percolation Rate (MPI)	Area Loading Rate (gpd/ft²)	Mound Absorption Ratio	Area Loading Rate (gpd/ft²)	Mound Absorption Ratio
E. Desig	gn Me	dia L	oading Rate:	1.	.2	GPD/ft ²	<0.1	-	1	-	1
F. Mour	nd Ab	sorpt	ion Ratio:	2.	00		0.1 to 5	1.2	1	1.6	1
		•	Table I				0.1 to 5 (fine sand and loamy fine sand)	0.6	2	1	1.6
	М	OUNE	CONTOUR LOADING	RATES:			6 to 15	0.78	1.5	1	1.6
Measu	rod	←	Texture - derived		Conto	ur	16 to 30	0.6	2	0.78	2
Perc R		OR	mound absorption rat	io	Loadi	_	31 to 45	0.5	2.4	0.78	2
	-	\rightarrow		4 1	Rate	·:	46 to 60	0.45	2.6	0.6	2.6
≤ 60n	npi		1.0, 1.3, 2.0, 2.4, 2.6	5 →	≤12		61 to 120	-	5	0.3	5.3
	\dashv	←		- I		\dashv	>120	-	-	-	*
61-120	mpi	OR	5.0	\rightarrow	≤12	*5	Systems with th	nese value	s are not	Type I sys	stems.
≥ 120 r	nni*		>5.0*	Contour Loading Rate (linear loading rate) is							is a
£ 1201	iipi		75.0		20		re	ecommen	ded value	·.	
2. DISP	ERSA	L ME	DIA SIZING								
A. Calcı	ılate	Disp	ersal Bed Area: De	sign Fl	ow ÷ D	esign Me	dia Loading Rat	te = ft²			
		600			.2	GPD/ft ²		ft ²			
		000	GFD :	- 1.		GPD/11	= 300				
	If a la	arger	dispersal media a	rea is	desire	d, enter s	ize:	ft ²			
B. Ente	r Disp	ersa	l Bed Width:	10	0.0	ft Co	an not exceed :	— 10 feet			
C. Calcı	ılate	Cont	ں :our Loading Rate:	Bed W	/idth >	ι (Design Λ	Media Loading F	Rate			
		10	$ft^2 X$ 1.		GPD/f		12.0 gal		Can not a	exceed Ta	hle 1
D. Calci	llate.		mum Dispersal Bed		J	<u> </u>					ote i
2. Cate		500			ft =	50.0		, ideii Di	ou Lenge		
]'' -	30.0					
B. ABSO	RPT	ION A	AREA SIZING								
A. Calcı	ulate	Abso	rption Width: Bed	Width	X Moi	und Absor	rption Ratio = .	Absorption	n Width		
		10.0) ft X 2.	0	=	20.0	ft				
B. For s	lopes	s >1%	, the Absorption W	idth is	meası	ured dow	—— nhill from the ı	upslope ed	dge of the	e Bed.	
	-		nslope Absorption								
Cutch		2011			0.0	ft -	10.0 ft	40	.0 ft		
					,.u	<u> </u>	10.0	= 10	.5		
4. DIST	RIBU	TION	MEDIA: ROCK								
A. Rock	k Med	lia De	epth Below Distribu	ution P	Pipe						
	6	ir	0.5	ft							
		_									

5.		DISTR	IBUTIC	ON ME	EDIA: R	REGISTER	RED TI	REATM	ENT P	RODUC	TS: CH	IAMBEF	RS AND	EZFLO	W		
A	۱.	Enter	Disper	sal M	edia:												
В	3.	Enter	the Co	mpor	nent: L	Length:			ft		Width:			ft [Depth:		ft
C		Numb	er of C	Compo	onents	per Row	= Bec	Lengt	h divid	led by (Compo	nent Le	ength (l	- Round เ	up)		
					ft ÷	÷		ft =			comp	onents	/row				
[).	Actua	Bed L	engtl	h = Nun	nber of (Compo	nents	row X	Compo	nent L	ength:					
					com	ponents	Χ			ft =				ft			
E		Numb	er of R	lows =	= Bed W	Vidth div	vided l	y Com	ponen	t Width	n (Roun	ıd up)		_			
					ft ÷	+		ft =			rows	Adjust	t width :	so this i	s an wh	ole nun	nber.
F	₹.	Total	Numbe	er of (Compor	nents = I	Numbe	er of C	ompon	ents pe	er Row	X Num	ber of I	Rows			
					Х			=			comp	onents					
6.		MOUN	D SIZI	NG													
4	١.	Calcul	ate Mi	inimu	m Clea	n Sand L	_ift: 3	feet m	ninus D	epth to	Limiti	ng Con	dition	= Cleai	n Sand	Lift	
		3.0	ft -		2.9	ft =		1.0	ft	Desig	n Sand	Lift (o	ptional):			ft
В	3.	Upslop	oe Hei	ght: 0	Clean S	and Lift	+ Dep	oth of	 Media	+ Depth	of Co	ver cov	er (1 ft	t.)		<u> </u>	
		1	.0	ft	+ 0.9	ft +	,	1.0	ft =	2	2.9	ft					
		Select	Unslo	ne Be	erm Mu	ー ltiplier ((based	on lar	그 nd slop	e):	2	 .61	7				
			ope %	· .	0	1	2	3	4	5	6	7	8	9	10	11	12
U		lope B		3:1	3.00		2.83	2.75	2.68	2.61	2.54	2.48	2.42	2.36	2.31	2.26	2.21
		Ratio		4:1	4.00	3.85	3.70	3.57	3.45	3.33	3.23	3.12	3.03	2.94	2.86	2.78	2.70
[).	Calcu	late U	pslop	e Berm	n Width:	Multip	olier X	Upslo	pe Mou	nd Hei	ght = l	Jpslope	Berm	Width		
							2	.61	ft)	(2	2.9	ft =	7	.4	ft		
E		Calcul	ate Dr	op in	Elevat	ion Unde	er Bed	: Bed '	Width I	X Land	Slope :	100 =	Drop (ft)			
							1	0.0	ft X		5.0	% ÷	100 =	0.	50	ft	
F	•	Calcul	ate Do	ownsl	оре Мо	und Hei	ght: U	pslope	Heigh	t + Dro	p in Ele	vation	= Dow	/nslope	Height	t	
								2.9	ft +	- 0	.50	ft =	3	.4	ft		
C	ì.	Select	Down	slope	Berm /	Multiplie	er (bas	sed on	land sl	ope):	3	.53]				
			lope %	ó	0	1	2	3	4	5	6	7	8	9	10	11	12
		ownslo erm Ra		3:1 4:1	3.00 4.00		3.19 4.35	3.30 4.54	3.41 4.76	3.53 5.00	3.66 5.26	3.80 5.56	3.95 5.88	4.11 6.25	4.29 6.67	4.48 7.14	4.69
_						4.17 4 rm Widt										7.14	7.69
	٠.	Catcut	acc De	7441130	орс всі	iiii widd		.53	7 x		3.4] ft =			ft		
1.		Calcul	ate Mi	inimu	m Bern	n to Cov						J					
								0.0	ft -		4] ft =			ft		
	ı	Dociar	. Down	sclope	n Rorm	= greate			_		4.0	ft					
		_				_		n and	41.	<u> </u>			7				
						ultiplier:						.00]	(usual	ly 3.0 d	or 4.0)	
L	•	Calcul	ate En	idslop	e Bern	n X Dow			¬ ⁻			7			L		
								.00			3.4	ft =			ft		
٨	٨.	Calcul	ate Mo	ound '	Width:	Upslope		7			_			T I		1	1
							. 4	ft +		0.0	ft +		4.0	ft =	31	.4	ft
١	١.	Calcul	ate Mo	ound	Length	: Endslo	pe Bei	m Wid	lth + B	ed Len	gth + I	Endslop	oe Bern	n Width	1		,
						13	3.4	ft +	- 5	0.0	ft +	1	3.4	ft =	76	.8	ft

OSTP Mound Materials Worksheet

University of Minnesota

Project ID:	v 04.06.2017
A. Calculate Rock Volume: (Rock Below Pipe + Rock to cover pipe (pipe outside	
(6 in + 2 in) ÷ 12 X 50.0	$ ft X $ 10.0 $ ft $ = 333.3 $ ft ^3$
Divide ft ³ by 27 ft ³ /yd ³ to c	relation subjectives de
Divide it by 27 it /yd to c	
	333.3 $ft^3 \div 27 = 12.3 yd^3$
Add 20% for constructability:	12.3 $yd^3 X$ 1.2 = 14.8 yd^3
For systems using other distribution media - see product registration for m	paterial required
	activa required
B. Calculate Clean Sand Volume:	
Volume Under Rock bed: Average Sand Depth x Media Width x Media Len	
1.1 ft X	0.0 ft X 50.0 ft = 550.0 ft ³
For a Mound on a slope from 0-1%	
Volume from Length = ((Upslope Mound Height - 1) X Absorption Width Bey	vond Bed X Media Bed Length)
2.85 ft -1) χ 5.00 X	50 ft = 462.50
Volume from Width = ((Upslope Mound Height - 1) X Absorption Width Beyon	and Bed X Media Bed Width)
2.85 ft - 1) X 5.00 X	10 ft = 92.50
Total Clean Sand Volume : Volume from Length + Volume from Width + Vo	
462.5 $ft^3 + 92.5$	$ft^3 + 550$ $ft^3 = 1105.0$ ft^3
For a Mound on a slope greater than 1%	
Upslope Volume: $((Upslope Mound Height - 1) \times 3 \times Bed Length) \div 2 = cu$	bic feet
((2.9 ft - 1) X 3.0 ft	X 50.0) \div 2 = 138.8 ft ³
Downslope Volume: ((Downslope Height - 1) x Downslope Absorption Widi	th v Madia Langth) : 2 - guhis fact
((<u>3.4</u> ft - 1) X <u>1</u>	0.0 ft X 50.0) \div 2 = 587.5 ft ³
Endslope Volume: (Downslope Mound Height - 1) x 3 x Media Width = cu	bic feet
(3.4 ft-1) X 3.0 ft	X 10.0 $ft = 70.5 ft^3$
Total Clean Sand Volume : Upslope Volume + Downslope Volume + Endslo	one Volume + Volume Under Media
	0.5 $ft^3 + 550.0$ $ft^3 = 1346.8$ ft^3
150.0	0.5
Divide ft ³ by 27 ft ³ /yd ³ to calculate cubic yards:	1346.8 $ft^3 \div 27 = 49.9 \text{ yd}^3$
Add 20% for constructability:	49.9 $yd^3 X$ 1.2 = 59.9 yd^3
C. Calculate Sandy Berm Volume:	
Total Berm Volume (approx): ((Avg. Mound Height - 0.5 ft topsoil) x Moun	d Width x Mound Length) ÷ 2 = cubic feet
(3.1 . 0.5)ft X 3	1.4 ft X 76.8) \div 2 = 3138.8 ft ³
Total Mound Volume - Clean Sand volume -Rock Volume = cubic feet	
	46.8 $ft^3 = 333.3$ $ft^3 = 1458.7$ ft^3
3138.8 ft ³ - 13	46.8 ft^3 - 333.3 ft^3 = 1458.7 ft^3
Divide ft ³ by 27 ft ³ /yd ³ to calculate cubic yards:	1458.7 $ft^3 \div 27 = 54.0 \text{ yd}^3$
A 11200/ C	
Add 20% for constructability:	$yd^3 x 1.2 = 64.8 yd^3$
D. Calculate Topsoil Material Volume: Total Mound Width X Total Mound Ler	ngth X .5 ft
31.4 ft X 7	6.8 ft X 0.5 ft = 1207.2 ft ³
31.7 It /	0.5 TC 7 1207.2 TT
Divide ft ³ by 27 ft ³ /yd ³ to calculate cubic yards:	1207.2 $ft^3 \div 27 = 44.7 \text{ yd}^3$
Add 20% for constructability:	44.7
AUU 20/6 TOT CONSTRUCTADIITTY:	44.7 $yd^3 x 1.2 = 53.7 yd^3$

OSTP Pressure Distribution Design Worksheet UNIVERSITY OF MINNESOTA

C	ontrol Agency			- 5				OF WI	ININE	OIA	,	
					F	Project	ID:				v 04	4.06.2017
1.	Media Bed Widtl	h:					10 ft					
2.	Minimum Numbe	er of Lat	terals in	system	/zone =	Rounde	d up number of	[(Media	Bed Wi	dth - 4)	÷ 3] + 1	
		_		7		_				·	-	
		[(10	- 4)	÷ 3] + 1	l =	3 later	als	Does	not app	ly to at	-grades
3.	Designer Selecte	ed Numb	per of L	aterals	:		3 later	als				
	Cannot be less t			ept in at	t-grades	;) <u> </u>				Insulated acces	is box	
4.	Select <i>Perforati</i>	on Spac	ing:				3.0 ft	12"	Geate	>12" Soil cov	. /	
5.	Select <i>Perforati</i>	on Dian	neter Siz	e:			7/32 in	//=" perforat	ions spaced 3' ap		im of rock	12"
6.	Length of Later	als = Me	edia Bed	Length	- 2 Fee	t.		Perfe	pration sizing: 1/8		ration spacing: 2' t	io 3.
	50	- 2ft	t =	4	8 f	t Pe	erforation can n	ot be clo	oser the	n 1 foot	from e	dge.
7.	Determine the N	Number	of Perfo	ration S	Spaces .	Divide	the Length of L	aterals	by the	Perfora	tion Spa	cing and
,.	round down to t	he near	est whol	le numb	er.							
	Number of Perf	oration	Spaces :	4	8 f	t	÷ 3	ft	=	16	Spa	aces
	Number of Perf	orations	per Lat	eral is	equal to	ว 1.0 plเ	us the <i>Number o</i>	_ f Perfor	ation Sp	oaces . (Check ta	ıble
8.	below to verify		-		-	lateral	guarantees less	than a	10% disc	harge v	ariation	. The
	value is double	with a c	enter m	anifold.								
	, Perf	foration.	s Per La	teral =	16	Sp	paces + 1 =	1	7	Perfs. Pe	er Latera	al
		Max	imum Numi	ber of Perf	forations P	er Lateral	to Guarantee <10% D	ischarge Va	ariation			
		¹/₄Inch i	Perforation	S				7/32	nch Perfo	rations		
Perf	oration Spacing (Feet)		Pipe D	iameter (I	nches)		Perforation Spacing		Pipe I	Diameter (I	nches)	
		1	11/4	11/2	2	3	(Feet)	1	11/4	11/2	2	3
	2	10	13	18	30	60	2	11	16	21	34	68
	21/2	8	12	16	28	54	21/2	10	14	20	32	64
	3	8	12	16	25	52	3	9	14	19	30	60
		3/16 Inch	Perforatio	ns					nch Perfor	ations		
Perf	oration Spacing (Feet)			iameter (I			Perforation Spacing			Diameter (I		
		1	11/4	11/2	2	3	(Feet)	1	1¼	11/2	2	3
	2	12	18	26	46	87	2	21	33	44	74	149
	21/2	12	17	24	40	80	21/2	20	30	41	69	135
	3	12	16	22	37	75	3	20	29	38	64	128
9.	Total Number o	-	ations e	equals tl	he <i>Numi</i>	ber of P	erforations per	Lateral	multipl	ied by t	he <i>Numl</i>	ber of
	Perforated Late	erals.										
	17 Per	rf. Per L	.at. X	3	3	Number	of Perf. Lat. =	5	1	Total Nu	mber of	Perf.
10.	Select Type of A	Manifola	l Connec	tion (E	nd or Ce	enter):	End					
11.	Select Lateral D	Diameter	r (See To	able):			1.50	in				

OSTP Pressure Distribution Design Worksheet University OF MINNESOTA

12.	Calculate the Square Feet per Perforation. Recommended value is 4-11 ft' per perforation.
	Does not apply to At-Grades
a.	Bed Area = Bed Width (ft) X Bed Length (ft)
	$\begin{array}{ c c c c c }\hline 10 & ft & X & 50 & ft & = & 500 & ft^2 \\ \hline \end{array}$
b.	Square Foot per Perforation = Bed Area divided by the Total Number of Perforations .
	ft^2 ÷ 51 perforations = 9.8 ft^2 /perforations
13.	Select Minimum Average Head: 2.0 ft
14.	Select <i>Perforation Discharge</i> (GPM) based on Table: 0.80 GPM per Perforation
15.	Determine required Flow Rate by multiplying the Total Number of Perfs. by the Perforation Discharge.
	51 Perfs X 0.80 GPM per Perforation = 41 GPM
16.	Volume of Liquid Per Foot of Distribution Piping (Table II): 0.110 Gallons/ft
17.	Volume of Distribution Piping = Table II
	= [Number of Perforated Laterals X Length of Laterals X (Volume of Liquid in Liquid Per Foot of Distribution Piping] Volume of Liquid in Pipe
	Pipe Liquid 3 X 48 ft X 0.110 gal/ft = 15.8 Gallons Diameter Per Foot
	3 X 48 ft X 0.110 gal/ft = 15.8 Gallons Diameter (inches) (Gallons)
18.	Minimum Delivered Volume = Volume of Distribution Piping X 4 1 0.045
	15.8 gals X 4 = 63.4 Gallons 1.25 0.078 1.5 0.110
	2 0.170
	manifold pipe \ 3
e	pipe from pump
L clean o	Manifold pipe
clean o	
	alternate location of pipe from pump
	of pipe from pump
	Pipe from pump
<u> </u>	and the state of t
Comn	nents/Special Design Considerations:

OSTP Basic Pump Selection Design Worksheet

1.	PUMP CAPACITY		Pro	ject ID:						v 0	4.06.2017
	Pumping to Gravity or Pressure Distri	bution:		Pres	sure						
	1. If pumping to gravity enter the galle	on per minute	of the pun	np:			GPM (10 - 45 g	pm)			
	2. If pumping to a pressurized distribu	tion system:			29	.0	GPM				
	3. Enter pump description:						Demand Dosing				
2.	HEAD REQUIREMENTS										eatment system nt of discharge
Α.	Elevation Difference	10 ft								- 100	<u> </u>
	between pump and point of discharge:							Supply line	lengtii		
В.	Distribution Head Loss:	5 ft			inle	et pipe 🕝			Elevation difference		
c.	Additional Head Loss:	ft (c	due to special	equipment,	etc.)					<u>_</u>	
	<u> </u>		·		´ L		Table I.Friction	n Loss i	o Plastic	Dine ne	r 100ft
	Distribution	n Head Lo	oss			1				ter (inch	
G	ravity Distribution = 0ft					1	Flow Rate (GPM)	1	1.25	1.5	2
Р	ressure Distribution based o	n Minimu	m Avera	ige Hea	ad	1	10	9.1	3.1	1.3	0.3
A	alue on Pressure Distributio						12	12.8	4.3	1.8	0.4
	Minimum Average Head	Distrib	oution F	lead L	oss	1	14	17.0	5.7	2.4	0.6
	1ft		5ft]	16	21.8	7.3	3.0	0.7
	2ft		6ft				18		9.1	3.8	0.9
	5ft		10ft			J	20		11.1	4.6	1.1
	<u></u>						25		16.8	6.9	1.7
D.	1. Supply Pipe Diameter:	3.0 in					30		23.5	9.7	2.4
	2. Consider Direct Learning	100					35			12.9	3.2
	2. Supply Pipe Length:	100 ft					40			16.5	4.1
E.	Friction Loss in Plastic Pipe per 100ft	from Table I	:				45			20.5	5.0
		7					50				6.1
	Friction Loss = 0.31	ft per 100ft	of pipe				55 60				7.3 8.6
F	Determine Equivalent Pipe Length from	n pump discha	arge to soil	dispersal	area dis	charge	65				10.0
•••	point. Estimate by adding 25% to supp						70				11.4
	Length (D.2) X 1.25 = Equivalent Pipe						75				13.0
			425.0	٦.			85				16.4
	100 ft X 1.25	=	125.0	ft			95				20.1
G.	Calculate Supply Friction Loss by mult	iplying <i>Frictio</i>	n Loss Per	100ft (Lir	ne E) by	the <i>Equi</i>	ivalent Pipe Lengt	h (Line F)	and divid	de by 100.	
	Supply Friction Loss =										
	0.31 ft per 100ft	Х	125.0	ft	÷	100	= 0.4	ft			
н.	Total Head requirement is the sum of the Supply Friction Loss (Line G)	the <i>Elevation</i>	Difference	(Line A),	, the Dist	ribution	Head Loss (Line E	3), Additio	nal Head	Loss (Line	e C), and
	10.0 ft +	5.0 ft	+			ft +	0.4 f	t =	15.4	ft	
3.	PUMP SELECTION			L			<u></u>	<u> </u>			
э.	A pump must be selected to deliver at	least	29.0	GPM (Li	ine 1 or L	ine 2) w	rith at least	15.4	feet	of total h	nead.
Con	nments:			`					<u>- </u>		

OSTP Pump Tank Design Worksheet (Demand Dose)

	DETERM	NINE TANK CAPACITY AND D	DIMENSIONS		Project ID:		v 04.06.2017
1.	Α.	Design Flow:		600	GPD		
	В.	Min. required pump tank o	capacity:			d pump tank capacity:	Gal
2.	Α.	Tank Manufacturer:	Brown Prec	ast	B. Tank Model:		
	c.	Capacity from manufactur	er:	1000	Gallons	Note: Design calculations are	e based on this specific tank.
	D.	Gallons per inch from man	ufacturer:	21.0	Gallons per inch	float or timer settings. Contonecessary.	•
	E.	Liquid depth of tank from	manufacturer:	46.0	inches	•	
DET	ERMINE	DOSING VOLUME					
3	Calculat recomm	• '	The inlet of the pump must	be at least 4-in	nches from the bottom of the	e pump tank & 2 inches of wate	er covering the pump is
4	(and block height + 2 inches) 10 in + m Delivered Volume = 4 X	2 inches) X	I.0 Gallor	ns Per Inch =	252 Gallons	
		7 of the Pressure Distribution				63 Gallons (mi	inimum dose)
5	Calculat Design F	e Maximum Pumpout Volun	ne (25% of Design Flow) GPD X	0.25	=	150 Gallons (ma	aximum dose)
789.	Calculat A. B. C. D.	pumpout volume that mee te Doses Per Day = Design F 600 gpd ÷ te Drainback: Diameter of Supply Pipe = Length of Supply Pipe = Volume of Liquid Per Linea Drainback = Length of Sup 100 ft X posing Volume = Delivered V 100 gal + Alarm Volume = Depth of 2 in X	low ÷ Delivered Volume 100 al Foot of Pipe = pply Pipe X Volume of Liqu 0.380 gal/ft olume plus Drainback 38.0 gal =	gal =	38.0 Gallons	volume of	f Liquid in pe Liquid Per Foot (Gallons) 0.045 0.078 0.110 0.170 0.380 0.661
		SE FLOAT SETTINGS					
	Total Do	te Float Separation Distance posing Volume /Gallons Per I 138 gal ÷	• •	gal/in =	6.6 Inches		
		ng from bottom of tank:	ump + block boight + 2 in a	205		Inches for Dose: 6.6 in	
		to set Pump Off Float = Po 10 in + to set Pump On Float=Dist	2	in =	12 Inches	Alarm Depth 20.6 in Pump On 18.6 in	
		12 in +	6.6	in =	19 Inches	Pump Off 12.0 in	
C.	Distance	e to set Alarm Float = Dista		i <u>'</u>	i		252 Gal
		19 in +	2.0	in =	21 Inches		

Flow Estimation: Other Establishments

v 03.15.2023

	- 2				v 03.15.2023
Establishment	7081 Specified Type of Establishment	Unit	# of Units	Design Flow per Unit (See Table I)	Total Avg Daily Flow
1	Office	square foot	2300	0.18	414
2					
3					
4					
5					
		Total Flow	v 7081 Estal	olishments (gpd)	414
Establishment	NON 7081 Specified Type of Establishment	Unit	# of Units	Design Flow per Unit	Total Avg Daily Flow
6					
7					
8					
9					
10					
		Total Flow Nor	n-7081 Estal	olishments (gpd)	
			Safe	ety Factor (gpd)	186.00
		Total Flow 7081 and Nor	7081 Estal	olishments (gpd)	600.00

Tank Buoyancy Worksheet

1.	Tank Specifications	Project ID:			v 03.15	5.2023
	Tank Manufacturer: Brown		Tank Model:	160 0 ST		
В.	Outside Tank Dimensions and Specifications	:	Tank Use:	Septic		
	Length: 147 in Width: 68 in	Height: 61 in	Diameter:	in		
	Length: 12.3 ft Width: 5.7 ft	Height: 5.1 ft	Radius of Tank:	in		
2.	Outside Volume of Tank					
	Rectangular Tank			Circular Tank		
A.	Area of Tank = Length (ft) X Width (ft)		A. Area of Tank = 1	$\pi r^2 = (3.14 \text{ X (Radius of Tan}))$	k) ²)	
	12.3 ft X 5.7 ft	= 69.4 sq.ft	3.14 X (ft) ² =	sq.ft	
В.	Volume of Tank = Area of Tank (2.A) X Heig	ht (ft)	B. Volume of Tank	x = Area of Tank X Height (ft)	
	69.4 sq.ft X 5.1 ft	= 352.9 cu.ft		sq.ft X ft =	=	cu.ft
3.	Force of Tank Weight (F _{TW})					
	Weight of Tank (provided by manufacturer)	13,600 lbs				
4.	Force of Soil Weight Over Tank (F _{SW})					
	Depth of Cover Over Tank: 20 in 1.7 ft			Soil Type	Weight of Soil (lbs/ft ³)	
	Weight of Soil Per Cubic Foot:	<u> </u>	. (6.7)		, ,	
C.	Volume of Soil Over Tank = Depth of Cover() (ft ²)	Sandy	120	
	1.7 ft X 69.4 sq.ft = 115			Loamy	100	
D.	Weight of Soil Over Tank = Volume of Soil O	ver Tank(4C) X Weight of S	oil Per Cubic Foot	Clay	90	
	115.7 cu.ft X 120 lbs/cu.ft =	13,883.3 lbs <i>Note: A</i>	ssumes saturation does no	t get over the lid of the tank	, - Fsoil Weight (Fsw)	``
5.E	Buoyant Force (F _B)					N 641 28
	Buoyant Force (F _B) = Outside Volume of Tan	k(2B) X Weight of Water Pe	er Cubic Foot (62.4 lbs	s/ft ³) X 1.2 (Safety Factor)	Inlet	
	353 X 62.4 lbs/cu.ft X 1.2	= 26,422.8 lbs			0	
6.	Evaluation of Net Forces				FTank weight (Ftw)	
A.	Downward Force = Force of Tank Weight (F	$_{\text{TW}})(3.)$ + Force of Soil Weig	ght of Soil $(F_{SW})(4.)$			
	13600 lbs + 13883 lbs	= 27,483.3 lbs			- FBuoyancy (FB)	E 708000
В.	Net Difference = Downward Force(6A) - Buo	yant Force Including Safety	Factor (5.)		F _{sw} + F _{tw} > 1.2 x F _B F _{sw} = V _{Soil} x 80 lbs/ft ³	
	27483 lbs - 26423 lbs	= 1,060.6 lbs			F_{tw} = Weight of tank F_B = Total tank volume x 6 (8)	2.4 lbs/ft³ .35 lbs/gal)
	If the Net Difference is negative, counter m Comments/Solution:	easures will need to be tal	ken to prevent the tar	nk from floating out of the	ground.	
	Comments/ Jotation.					

APPROVED PLAN

Tank Buoyancy Worksheet

1.	Tank Specifications	Project ID:			v 03.15.202	23
			Tank Madal	B1000L		
	Tank Manufacturer: Brown		l L	D TUUUL		
В.	Outside Tank Dimensions and Specifications:		Tank Use:	Dosing		
	Length: 98 in Width: 68 in	Height: 61 in	Diameter:	in		
	Length: 8.2 ft Width: 5.7 ft	Height: 5.1 ft	Radius of Tank:	in		
2.	Outside Volume of Tank					
	Rectangular Tank			Circular Tank		
A.	Area of Tank = Length (ft) X Width (ft)	 	A. Area of Tank = 7	$\pi r^2 = (3.14 \text{ X (Radius of Tan}))$	ık) ²)	
	8.2 ft X 5.7 ft =	46.3 sq.ft	3.14 X (ft) ² =	sq.ft	
В.	Volume of Tank = Area of Tank (2.A) X Height (ft)	B. Volume of Tank	= Area of Tank X Height (ft)	
	46.3 sq.ft X 5.1 ft =	235.2 cu.ft	S	sq.ft X ft =	= Cu.	ft
3.	Force of Tank Weight (F _{TW})		I.			
	Weight of Tank (provided by manufacturer)	8,650 lbs				
4.	Force of Soil Weight Over Tank (F _{sw})					
	Depth of Cover Over Tank: 20 in 1.7 ft Weight of Soil Per Cubic Foot: 120 lbs/cu.ft			Soil Type	Weight of Soil (lbs/ft ³)	
C.	Volume of Soil Over Tank = Depth of Cover(4A)	(ft) X Area of Tank(2A)	(ft ²)	Sandy	120	
	1.7 ft X 46.3 sq.ft = 77.1	cu.ft	(,	Loamy	100	
D.	Weight of Soil Over Tank = Volume of Soil Over	Tank(4C) X Weight of So	oil Per Cubic Foot	Clay	90	
	77.1 cu.ft X 120 lbs/cu.ft = 9,2	55.6 lbs Note: Ass	sumes saturation does no	t get over the lid of the tank	, - Fsoil Weight (Fsw) - ,	
5 P	Buoyant Force (F _B)					
J. L	Buoyant Force (F_B) = Outside Volume of Tank(2)	B) X Weight of Water Pe	r Cubic Foot (62.4 lbs	s/ft ³) X 1.2 (Safety Factor)	Inlet	
	235 X 62.4 lbs/cu.ft X 1.2 =	17,615.2 lbs				
6.	Evaluation of Net Forces				Fĭank weight (Ftw)	
A.	Downward Force = Force of Tank Weight (F _{TW})(5	3.) + Force of Soil Weig	ht of Soil $(F_{SW})(4.)$			3000
	8650 lbs + 9256 lbs =	17,905.6 lbs			Fsw + Ftw > 1.2 x FB	(S) D, V (Y)
В.	Net Difference = Downward Force(6A) - Buoyan	t Force Including Safety	Factor (5.)		F _{sw} = V _{soil} x 80 lbs/ft ³ F _{tw} = Weight of tank	
	17906 lbs - 17615 lbs =	290.4 lbs			F _B = Total tank volume x 62.4 lbs (8.35 lbs	
	If the Net Difference is negative, counter meas Comments/Solution:	ures will need to be take	en to prevent the tan	nk from floating out of the	ground.	
		-				

MAP LEGEND

Area of Interest (AOI) Transportation Area of Interest (AOI) Rails Soils Interstate Highways **Soil Rating Polygons** US Routes Extremely limited Major Roads Very limited Local Roads Moderately limited **Background** Slightly limited Aerial Photography Not limited Not rated or not available Soil Rating Lines Extremely limited Very limited Moderately limited Slightly limited Not limited Not rated or not available **Soil Rating Points** Extremely limited Very limited Moderately limited Slightly limited Not limited Not rated or not available **Water Features** Streams and Canals

MAP INFORMATION

The soil surveys that comprise your AOI were mapped at 1:15.800.

Warning: Soil Map may not be valid at this scale.

Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil line placement. The maps do not show the small areas of contrasting soils that could have been shown at a more detailed scale.

Please rely on the bar scale on each map sheet for map measurements.

Source of Map: Natural Resources Conservation Service

Web Soil Survey URL:

Coordinate System: Web Mercator (EPSG:3857)

Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts distance and area. A projection that preserves area, such as the Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required.

This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.

Soil Survey Area: Anoka County, Minnesota Survey Area Data: Version 21, Sep 9, 2023

Soil map units are labeled (as space allows) for map scales 1:50,000 or larger.

Date(s) aerial images were photographed: Jun 29, 2023—Sep 13, 2023

The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.

Septic Tank Absorption Fields — Mound (MN)

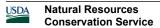
Map unit symbol	Map unit name	Rating	Component name (percent)	Rating reasons (numeric values)	Acres in AOI	Percent of AOI
SoA	Soderville fine sand, 0 to 3	Slightly limited	Soderville (85%)	Soil saturation (0.12)	1.4	40.9%
	percent slopes			Slope (0.02)		
ZmB	Zimmerman fine sand, 1 to 6	Slightly limited	Zimmerman (90%)	Slope (0.15)	2.0	59.1%
	percent slopes		Cantlin (5%)	Slope (0.02)		
			Lino (2%)	Soil saturation (0.12)		
Totals for Area	of Interest	3.3	100.0%			

Rating	Acres in AOI	Percent of AOI
Slightly limited	3.3	100.0%
Totals for Area of Interest	3.3	100.0%

Description

"Mound septic tank absorption fields" are areas in which effluent from a septic tank is distributed into the soil surface through perforated pipe. In this system the drain field is placed above the soil surface in a mound. The ratings are based on the soil properties that affect absorption of the effluent, construction and maintenance of the system, and public health. Saturated hydraulic conductivity (Ksat) is evaluated from the surface to a depth of 30 centimeters. Depth to saturation and depth to bedrock are evaluated from the surface to a depth of 203 centimeters. The frequency of ponding and flooding also is evaluated. Excessive slope may cause lateral seepage and surfacing of the effluent in downslope areas.

The ratings are both verbal and numerical. Rating class terms indicate the extent to which the soils are limited by all of the soil features that affect the specified use. "Not limited" indicates that the soil has features that are very favorable for the specified use. Good performance and very low maintenance can be expected. "Slightly limited" indicates that the soil has features that are favorable for the specified use. "Moderately limited" indicates that the soil has features that are moderately favorable for the specified use. The limitations can be overcome or minimized by special planning, design, or installation. Good performance and moderate maintenance can be expected. "Very limited" indicates that the soil has one or more features that are unfavorable for the specified use. The limitations generally cannot be overcome without special design or expensive installation procedures. "Extremely limited" indicates that the soil has one or more features that are very unfavorable for the specified use. The limitations generally cannot be overcome.

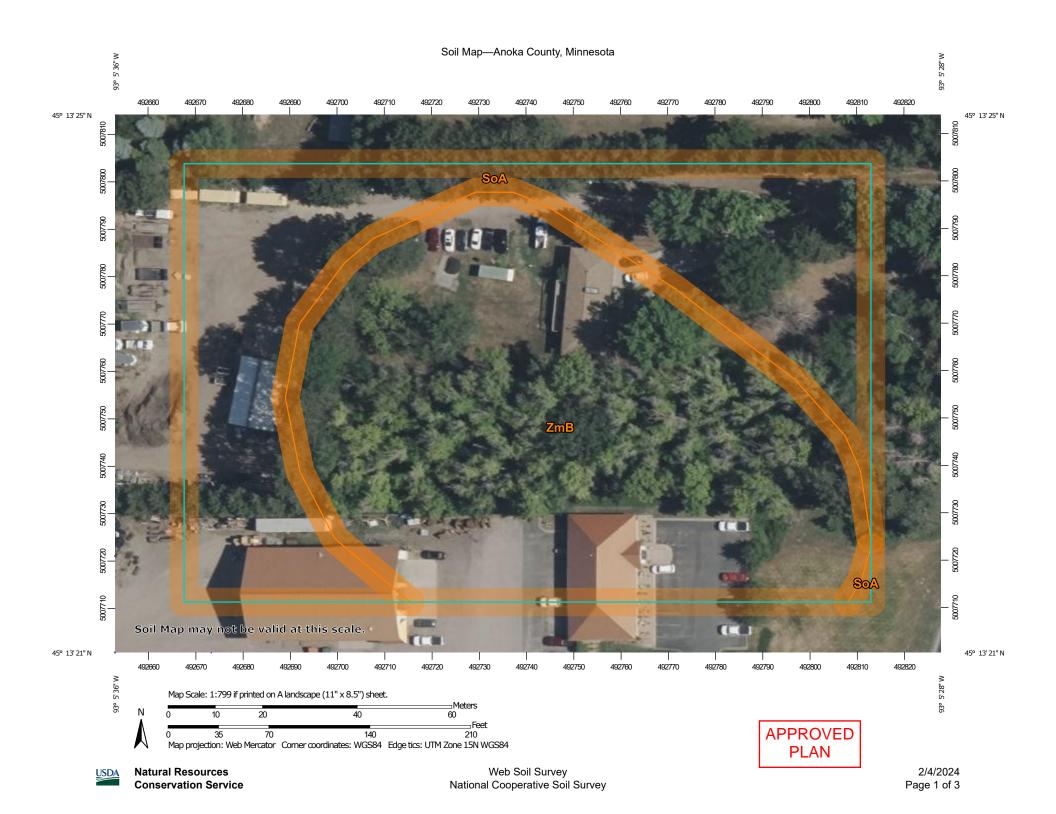

Numerical ratings indicate the severity of individual limitations. The ratings are shown as decimal fractions ranging from 0.01 to 1.00. They indicate gradations between the point at which a soil feature has the greatest negative impact on the use (1.00) and the point at which the soil feature is not a limitation (0.00).

The components listed for each map unit in the accompanying Summary by Map Unit table in Web Soil Survey or the Aggregation Report in Soil Data Viewer are determined by the aggregation method chosen. An aggregated rating class is shown for each map unit. The components listed for each map unit are only those that have the same rating class as the one shown for the map unit. The percent composition of each component in a particular map unit is given to help the user better understand the extent to which the rating applies to the map unit.

Other components with different ratings may occur in each map unit. The ratings for all components, regardless the aggregated rating of the map unit, can be viewed by generating the equivalent report from the Soil Reports tab in Web Soil Survey or from the Soil Data Mart site. Onsite investigation may be needed to validate these interpretations and to confirm the identity of the soil on a given site.

Rating Options

Aggregation Method: Dominant Condition



Component Percent Cutoff: None Specified

Tie-break Rule: Higher

MAP LEGEND

â

00

Δ

Water Features

Transportation

Background

Spoil Area

Stony Spot

Wet Spot

Other

Rails

US Routes

Major Roads

Local Roads

Very Stony Spot

Special Line Features

Streams and Canals

Interstate Highways

Aerial Photography

Area of Interest (AOI)

Area of Interest (AOI)

Soils

Soil Map Unit Polygons

Soil Map Unit Points

Special Point Features

Blowout

Borrow Pit

Clay Spot

Closed Depression

Gravel Pit

Gravelly Spot

Landfill

Lava Flow

Marsh or swamp

Mine or Quarry

Miscellaneous Water

Perennial Water

Rock Outcrop

Saline Spot

Sandy Spot

Severely Eroded Spot

Sinkhole

Slide or Slip

Sodic Spot

MAP INFORMATION

The soil surveys that comprise your AOI were mapped at 1:15.800.

Warning: Soil Map may not be valid at this scale.

Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil line placement. The maps do not show the small areas of contrasting soils that could have been shown at a more detailed scale

Please rely on the bar scale on each map sheet for map measurements.

Source of Map: Natural Resources Conservation Service Web Soil Survey URL:

Coordinate System: Web Mercator (EPSG:3857)

Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts distance and area. A projection that preserves area, such as the Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required.

This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.

Soil Survey Area: Anoka County, Minnesota Survey Area Data: Version 21, Sep 9, 2023

Soil map units are labeled (as space allows) for map scales 1:50.000 or larger.

Date(s) aerial images were photographed: Jun 29, 2023—Sep 13, 2023

The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.

Map Unit Legend

Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI
SoA	Soderville fine sand, 0 to 3 percent slopes	1.4	40.9%
ZmB	Zimmerman fine sand, 1 to 6 percent slopes	2.0	59.1%
Totals for Area of Interest		3.3	100.0%

University of Minnesota

Septic System Management Plan for Above Grade Systems

The goal of a septic system is to protect human health and the environment by properly treating wastewater before returning it to the environment. Your septic system is designed to kill harmful organisms and remove pollutants before the water is recycled back into our lakes, streams and groundwater.

This **management plan** will identify the operation and maintenance activities necessary to ensure long-term performance of your septic system. Some of these activities must be performed by you, the homeowner. Other tasks must be performed by a licensed septic maintainer or service provider. However, it is YOUR responsibility to make sure all tasks get accomplished in a timely manner.

The University of Minnesota's *Septic System Owner's Guide* contains additional tips and recommendations designed to extend the effective life of your system and save you money over time.

Proper septic system design, installation, operation and maintenance means safe and clean water!

Property Owner					
Property Address	Property ID				
System Designer	Phone				
System Installer	Phone				
Service Provider/Maintainer	Phone				
Permitting Authority	Phone				
Permit #	Date Inspected				

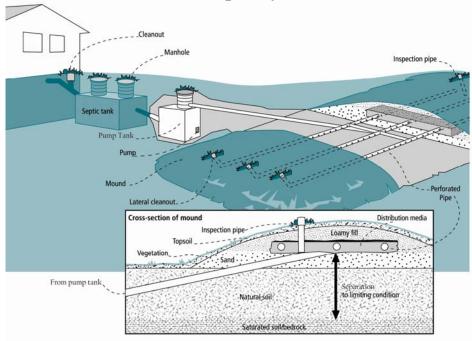
Keep this Management Plan with your *Septic System Owner's Guide*. The *Septic System Owner's Guide* includes a folder designed to hold maintenance records including pumping, inspection and evaluation reports. Ask your septic professional to also:

- Attach permit information, designer drawings and as-builts of your system, if they are available.
- Keep copies of all pumping records and other maintenance and repair invoices with this document.
- Review this document with your maintenance professional at each visit; discuss any changes in product use, activities or water-use appliances.

For a copy of the Septic System Owner's Guide, call 1-800-876-8636 or go to http://shop.extension.umn.edu/

http://septic.umn.edu

Version 11/03/2010


APPROVED PLAN

University of Minnesota

Septic System Management Plan for Above Grade Systems

Your Septic System

Septic System Specifics				
System Type: I II III IV* V* (Based on MN Rules Chapter 7080.2200 – 2400)	☐ System is subject to operating permit* ☐ System uses UV disinfection unit* Type of advanced treatment unit *Additional Management Plan required			

Dwelling Type	Well Construction			
Number of bedrooms:	Well depth (ft):			
System capacity/ design flow (gpd):	□ Cased well Casing depth:			
Anticipated average daily flow (gpd):	□ Other (specify):			
Comments	Distance from septic (ft):			
Business? What type?	Is the well on the design drawing? Y N			

Septi	c Ta	ank
One tank Tank volume: gallons		Pump Tank gallons
Does tank have two compartments? Y N		Effluent Pump make/model:
Two tanks Tank volume: gallons		Pump capacity GPM
Tank is constructed of		TDH Feet of head
Effluent Screen <i>type</i> :		Alarm location

Soil Treatment Area (STA)			
Mound/At-Grade area (width x length): ft x ft	☐ Cleanouts or inspection ports		
Rock bed size (width x length): ft x ft	□ Surface water diversions		
Location of additional STA:	□ Additional STA not available		

Septic System Management Plan for Above Grade Systems

Homeowner Management Tasks

These operation and maintenance activities are your responsibility. Use the chart on page 6 to track your activities.

Identify the service intervals recommended by your system designer and your local government. The tank assessment for your system will be the shortest interval of these three intervals. Your pumper/maintainer will determine if your tank needs to be pumped.

System Designer:	check every	months	My tank needs	to be checked
Local Government:	check every	months	3	
State Requirement:	check every 36	months	every	months

Seasonally or several times per year

- Leaks. Check (listen, look) for leaks in toilets and dripping faucets. Repair leaks promptly.
- Surfacing sewage. Regularly check for wet or spongy soil around your soil treatment area. If surfaced sewage or strong odors are not corrected by pumping the tank or fixing broken caps, call your service professional. Untreated sewage may make humans and animals sick.
- *Alarms*. Alarms signal when there is a problem; contact your maintainer any time the alarm signals.
- *Lint filter*. If you have a lint filter, check for lint buildup and clean when necessary. Consider adding one after washing machine.
- Effluent screen. If you do not have one, consider having one added the next time the tank is cleaned.

Annually

- Water usage rate. A water meter can be used to monitor your average daily water use. Compare your water usage rate to the design flow of your system (listed on the next page). Contact your septic professional if your average daily flow over the course of a month exceeds 70% of the design flow for your system.
- Caps. Make sure that all caps and lids are intact and in place. Inspect for damaged caps at least every fall. Fix or replace damaged caps before winter to help prevent freezing issues.
- Water conditioning devices. See Page 5 for a list of devices. When possible, program the recharge frequency based on water demand (gallons) rather than time (days). Recharging too frequently may negatively impact your septic system.
- Review your water usage rate. Review the Water Use Appliance chart on Page 5. Discuss any major changes with your pumper/maintainer.

During each visit by a pumper/maintainer

- Ask if your pumper/maintainer is licensed in Minnesota.
- Make sure that your pumper/maintainer services the tank through the manhole. (NOT though a 4" or 6" diameter inspection port.)
- Ask your pumper/maintainer to accomplish the tasks listed on the Professional Tasks on Page 4.

APPROVED PLAN

University of Minnesota

Professional Management Tasks

These are the operation and maintenance activities that a pumper/maintainer performs to help ensure long-term performance of your system. Professionals should refer to the O/M Manual for detailed checklists for tanks, pumps, alarms and other components. Call 800-322-8642 for more details.

• Written record provided to homeowner after each visit.

Plumbing/Source of Wastewater

- Review the Water Use Appliance Chart on Page 5 with homeowner. Discuss any changes in water use and the impact those changes may have on the septic system.
- Review water usage rates (if available) with homeowner.

Septic Tank/Pump Tanks

- *Manhole lid.* A riser is recommended if the lid is not accessible from the ground surface. Insulate the riser cover for frost protection.
- *Liquid level*. Check to make sure the tank is not leaking. The liquid level should be level with the bottom of the outlet pipe. (If the water level is below the bottom of the outlet pipe, the tank may not be watertight. If the water level is higher than the bottom of the outlet pipe of the tank, the effluent screen may need cleaning, or there may be ponding in the drainfield.)
- Inspection pipes. Replace damaged caps.
- *Baffles*. Check to make sure they are in place and attached, and that inlet/outlet baffles are clear of buildup or obstructions.
- *Effluent screen*. Check to make sure it is in place; clean per manufacturer recommendation. Recommend retrofitted installation if one is not present.
- *Alarm.* Verify that the alarm works.
- *Scum and sludge*. Measure scum and sludge in each compartment of each septic and pump tank, pump if needed.

Pump

- Pump and controls. Check to make sure the pump and controls are operating correctly.
- Pump vault. Check to make sure it is in place; clean per manufacturer recommendations.
- *Alarm.* Verify that the alarm works.
- *Drainback*. Check to make sure it is operating properly.
- Event counter or run time. Check to see if there is an event counter or run time log for the pump. If there is one, calculate the water usage rate and compare to the anticipated average daily flow listed on Page 2.

Soil Treatment Area

- Inspection pipes. Check to make sure they are properly capped. Replace caps that are damaged.
- Surfacing of effluent. Check for surfaced effluent or other signs of problems.
- Lateral flushing. Check lateral distribution; if cleanouts exist, flush and clean as needed.
- *Ponding*. Check for ponding. Excessive ponding in at-grade and mound beds indicates problems.

All other components – inspect as listed here:

APPROVED PLAN

University of Minnesota

Septic System Management Plan for Above Grade Systems

Water-Use Appliances and Equipment in the Home

Appliance	Impacts on System	Management Tips
Garbage disposal	 Uses additional water. Adds solids to the tank. Finely-ground solids may not settle. Unsettled solids can exit the tank and enter the soil treatment area. 	 Use of a garbage disposal is not recommended. Minimize garbage disposal use. Compost instead. To prevent solids from exiting the tank, have your tank pumped more frequently. Add an effluent screen to your tank.
Washing machine	 Washing several loads on one day uses a lot of water and may overload your system. Overloading your system may prevent solids from settling out in the tank. Unsettled solids can exit the tank and enter the soil treatment area. 	 Choose a front-loader or water-saving top-loader, these units use less water than older models. Limit the addition of extra solids to your tank by using a liquid or easily biodegradable detergents. Install a ling filter after the washer and an effluent screen on your tank. Wash only full loads. Limit use of bleach-based detergents. Think even – spread your laundry loads throughout the week.
2 nd floor laundry	The rapid speed of water entering the tank may reduce performance.	 Install an effluent screen in the septic tank to prevent the release of excessive solids to the soil treatment area. Be sure that you have adequate tank capacity.
Dishwasher	 Powdered and/or high-phosphorus detergents can negatively impact the performance of your tank and soil treatment area. New models promote "no scraping". They have a garbage disposal inside. 	 Use gel detergents. Powdered detergents may add solids to the tank. Use detergents that are low or no-phosphorus. Wash only full loads. Scrape your dishes anyways to keep undigested solids out of your septic system.
Grinder pump (in home)	Finely-ground solids may not settle. Unsettled solids can exit the tank and enter the soil treatment area.	 Expand septic tank capacity by a factor of 1.5. Include pump monitoring in your maintenance schedule to ensure that it is working properly. Add an effluent screen.
Large bathtub (whirlpool)	 Large volume of water may overload your system. Heavy use of bath oils and soaps can impact biological activity in your tank and soil treatment area. 	 Avoid using other water-use appliances at the same time. For example, don't wash clothes and take a bath at the same time. Use oils, soaps, and cleaners in the bath or shower sparingly.
Clean Water Uses	Impacts on System	Management Tips
High-efficiency furnace	Drip may result in frozen pipes during cold weather.	Re-route water into a sump pump or directly out of the house. Do not route furnace recharge to your septic system.
Water softener Iron filter Reverse osmosis	 Salt in recharge water may affect system performance. Recharge water may hydraulically overload the system. 	 These sources produce water that is not sewage and should not go into your septic system. Reroute water from these sources to another outlet, such as a dry well, draintile or old drainfield.
Surface drainage Footing drains	Water from these sources will likely overload the system.	 When replacing consider using a demand-based recharge vs. a time-based recharge. Check valves to ensure proper operation; have unit serviced per manufacturer directions

University of Minnesota

Septic System Management Plan for Above Grade Systems

Maintenance Log

Track maintenance activities here for easy reference. See list of management tasks on pages 3 and 4.

Activity	Date accomplished								
Check frequently:									
Leaks: check for plumbing leaks									
Soil treatment area check for surfacing									
Lint filter: check, clean if needed									
Effluent screen: if owner-maintained									
Check annually:				1	1				
Water usage rate (monitor frequency)									
Caps: inspect, replace if needed									
Water use appliances – review use									
Other:									
Notes:									
Mitigation/corrective action plan:									
"As the owner of this SSTS, I understand it is my responsibility to properly operate and maintain the sewage treatment system on this property, utilizing the Management Plan. If requirements in this Management Plan are not met, I will promptly notify the permitting authority and take necessary corrective actions. If I have a new system, I agree to adequately protect the reserve area for future use as a soil treatment system."									
Property Owner Signature:	Date								
Management Plan Prepared By:	Certification #								
Permitting Authority:									

©2010 Regents of the University of Minnesota. All rights reserved. The University of Minnesota is an equal opportunity educator and employer.

This material is available in alternative formats upon request. Contact the Water Resources Center, 612-624-9282. The Onsite Sewage

Treatment Program is delivered by the University of Minnesota Extension Service and the University of Minnesota Water Resources Center.

PLAN

		11111	eiu So	n vermo	ation	Report
Date of Verifica		4		Time:		00 A-
Site Address: 1		Orive			it # ス02	20100- F
Limiting Condi	tion & Distance:	Re	Jax	36"	/	
Boring Or Test	tion & Distance: Pit Location:	pprox	l roc	ikbul	ter	ot-
Depth In Inches		Soils E	ncounter	red		
•	orn 2/2,	Fal 1	(5	suple 6		<u> </u>
	10R 3/4	fal,		(56	>	
22-36 1 36-39	10-12 4/4	Fo 1		(36-)	<u></u>	
30 31	1/7.5-	R 5/8	2	0 S6		
	/	71				
			76.1			
						1.6
End Of Boring At:	39 Redox Preso	ent At: 34	St	anding Water	Present A	At: N
	<	o Columb	~ ⁵) *			
	4	e e	>			
					was to Miss	poseto Pulsa
This report documents an 7082.0500, Subpart 3(4)	infield verification conduc	ted by the und	rsigned city	y inspector purs	uant to Min	nesota Kules,
By:	110		MP	CA License N	o:	L2896

APPROVED PLAN