

# GRENADA BUSINESS & TECHNOLOGY PARK

**459 AC | 2 GW+ BEHIND-THE-METER VISION**

## **TIER IV / 2N INTENT**

# AI DATA CENTER DEVELOPMENT



# IS THIS THE MOST POWER-DENSE DATA CENTER SITE IN THE U.S.?



- Columbia Gulf on-site; ~484k Dth/day deliverability (per TC Energy)
- Power path: buyer-provided recip 200 MW ~14 mos post-close; +300 MW +12 mos (→ 500 MW)
- \$4.3M grading grant → bench-ready pads; corridors reserved



SCOTT MOSER

## Principal

**(502) 716-0659**

smoser@cross

# LEE WILBURN

## Principal

**(502) 939-7909**

[lwilburn@crossdockdevelopment.com](mailto:lwilburn@crossdockdevelopment.com)

## **Affordably Priced - Regional momentum: AWS \$10B in MS; NVIDIA-aligned workforce ramping**

***Behind-the-meter campus; no utility export assumed. Deliverability per TC Energy correspondence; subject to contract & operations. Buyer procures generation (recips) and gas.***



EXIT 211 TO AMERICAN WAY | GRENADA, MS

## LOCATION, ACCESS & UTILITIES

### ACCESS

- Two I-55 interchanges nearby for heavy-haul ingress/egress
- American Way frontage with dual gated entries (visitor + employee)
- Truck staging & laydown areas reserved inside the perimeter



### MUNICIPAL UTILITIES

- Standardized buildings • Copy-exact utility kit
- American Way ROW: industrial-scale water | sewer | electric in place
- Natural Gas: on-site Columbia Gulf (3 mains); ~484k Dth/day deliverability (per TC Energy)
- Grid (optional/supplemental): ~15 MW total (Entergy ~15 MW), ~8-12 months from end-user agreement
- BTM primary; private-wire corridors reserved (no utility export assumed)

Own Your Own Fiber

Behind-the-meter campus; no utility export assumed. Deliverability per TC Energy correspondence; subject to contract & operations. Buyer procures generation (recips) and gas.



## HIGH-EFFICIENCY, LOW-WATER, INTEGRATED DESIGN



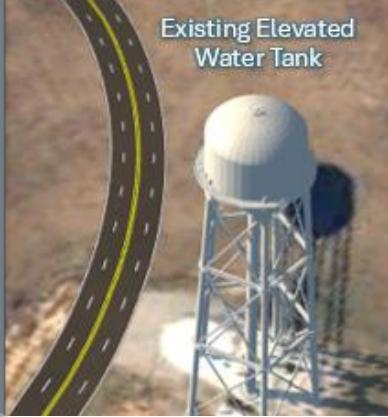
### Low-Water Central Plant (CHW S/R)

- **Low-water by default.** Central plant loops CHW S/R; secondary chiller heat reused where it helps. Dry/Hybrid cuts chemicals and visible plumes.
- **Water Quality Plant.** On-site polishing and reuse; reserved expansion pad enables blowdown recovery to reach the upper water-savings range.

Conceptual ranges. Figures reflect standard kit/duty assumptions; upper water range assumes WQP expansion + blowdown recovery. Actual results depend on final selections, load factor, and climate. Energy shown at \$70/MWh (utility parity typically \$110–\$130/MWh).

### Energy & Water Impact

|                                  |                                                  |
|----------------------------------|--------------------------------------------------|
| ➤ <b>Cooling Energy Cut</b>      | ~10% cooling-energy reduction                    |
| ➤ <b>Annual Energy Value</b>     | ~180 GWh/yr • ~\$12.6M/yr @ \$70/MWh             |
| ➤ <b>Potable Water Reduction</b> | ~30–60% (with WQP expansion + blowdown recovery) |
| ➤ <b>Water Avoided Annually</b>  | ~780M gal/yr                                     |


## PATH TO POWER — Illustrative Ramp (BTM)



## Timeline

- Phase A: ~200 MW ≈ 14 months post-close (gas lateral complete)
- Phase B: +300 MW ≈ +12 months → ~500 MW total
- Air Quality: PSD-aware ramp with BACT controls

Schedules are indicative and depend on OEM lead times, contracts, and approvals. Gas deliverability per TC Energy correspondence; subject to contract & operations.



## Power

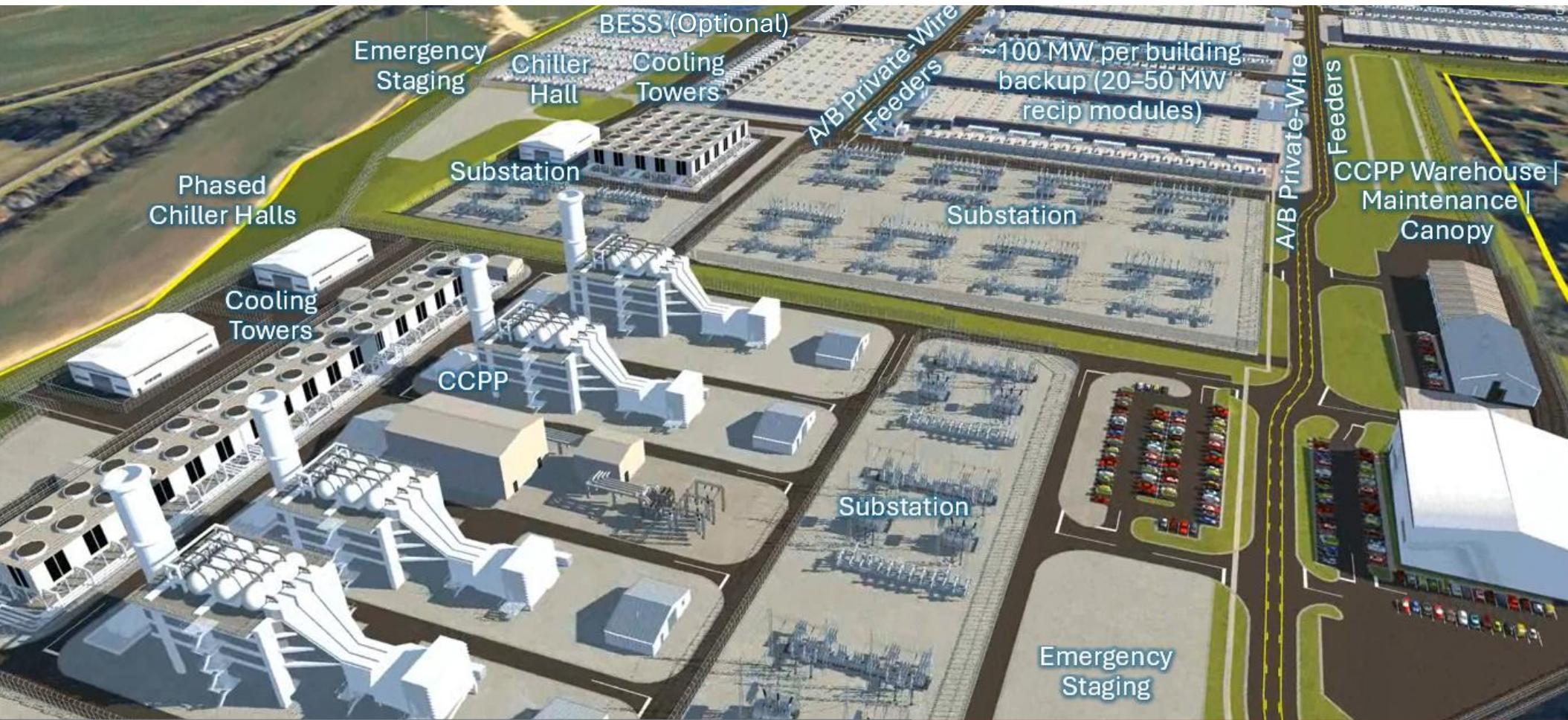
- Standardized buildings and utility details enable repeatable phases, shorter runs, and easier maintenance across the campus.
- Recips in 20-50 MW blocks provide ~100 MW per building (N+1) while CCPP builds
- A/B private-wire kept off pavement in grass-first corridors; switchable nodes & islandable sections; no utility export assumed.
- Grid (optional/supplemental): ~15 MW total (Entergy ~15 MW ~15 MW), ~8-12 months from EU agreement

Conceptual only. Delivery, ownership, and funding of utilities/facilities to be defined in commercial agreements. No utility export assumed.

## RESERVED UTILITY CORRIDORS (Concept) — Multi-Utility



### What the Private Utility Loop Supports


- Gas to M&R and recip yards (~484,000 Dth/day per TC Energy)
- 3 on-site Columbia Gulf (TC Energy) pipelines; looped recip header; CCPP M&R dual-fed
- Power (private-wire) feeders/substation corridors
- CHW S/R ring to data halls and chiller halls
- Fiber/controls in common duct
- Fire loop with hydrants/FDC stubs.

### How it's Configured (Concept)

- Grass-first utility corridors with selective stone where loads/code require; primary drives and yard aprons paved
- Sectionalized ring with valves/switches at nodes
- Outside pads for 24/7 access and safe hot-work
- N+1 intent (pumps/feeders); islandable sections
- Supports recip ramp to ~500 MW
- BTM primary; no utility export assumed

Conceptual only. Delivery, ownership, and funding of utilities/facilities to be defined in commercial agreements. No utility export assumed.

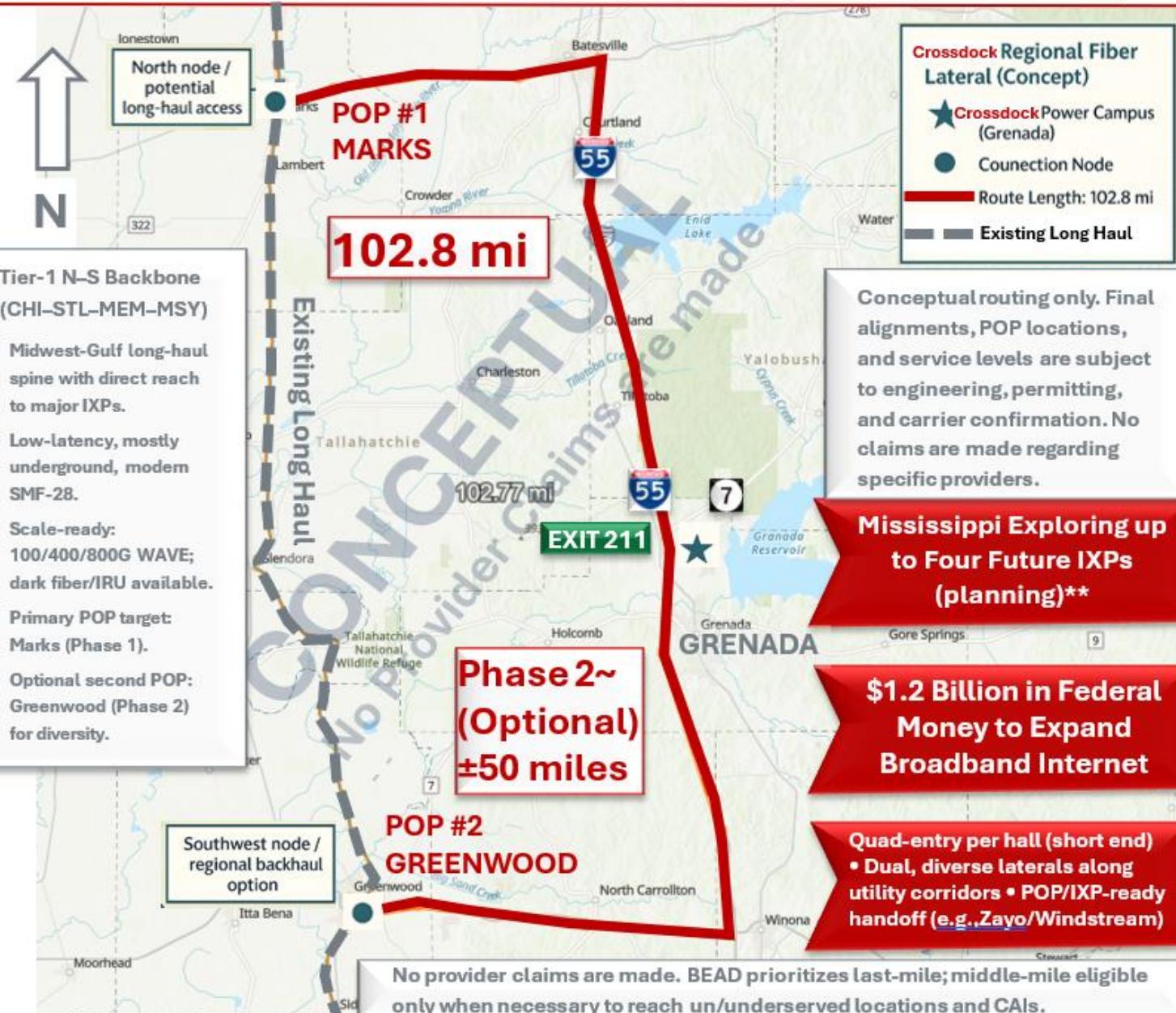
## SUBSTATIONS & PRIVATE WIRE (Concept)



### Operations & Protection (Concept)

- Islandable sections; coordinated relays and SCADA.
- Ring/tie topology with sectional breakers for maintenance without downtime.
- BTM primary; no utility export assumed (grid ~15 MW optional/supplemental; ~8-12 months from EU agreement).

### Power Backbone (what's shown)


- A/B private-wire in grass-first corridors
- Switchable nodes; sectional ring; islandable
- SCADA/relays coordinated
- Recip ramp ~500 MW → backup
- BTM primary; no export

*Conceptual only. Delivery, ownership, and funding of utilities/facilities to be defined in commercial agreements. No utility export assumed.*

55 EXIT 211 TO AMERICAN WAY | GRENADA, MS

## NEW FIBER CONCEPT ROUTE

APPROXIMATELY 50 MILES TO EITHER MARKS WAVE POP (PHASE 1) OR GREENWOOD DIA POP (PHASE 2) = REDUNDANCY



Abbrev.: DIA = Dedicated Internet Access; WAVE = optical wavelength.

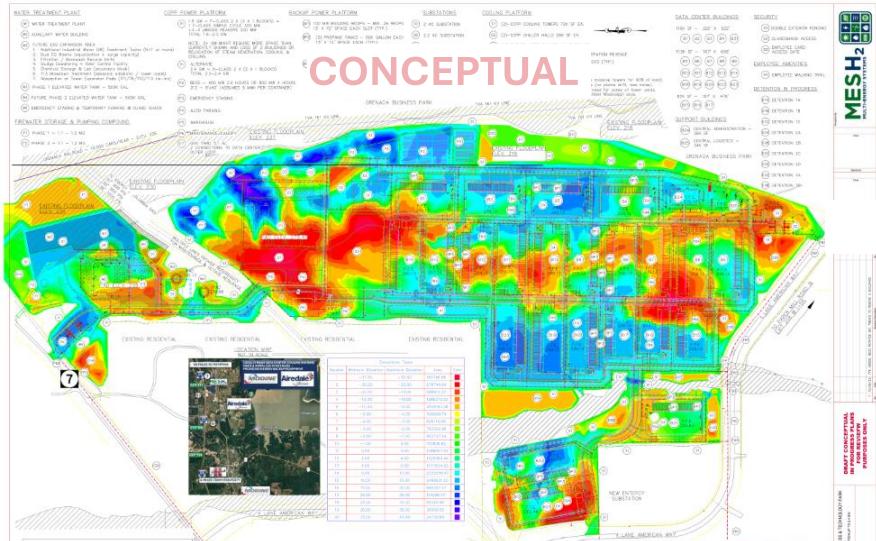
### Why it matters

- Two physically diverse laterals engineered for 4-9s uptime target with minimal mid-span splices.
- Carrier-neutral POP/MMR handoffs; 100/400G today, 800G on request (subject to carrier).
- BEAD-aligned design enables last-mile to community anchors and nearby underserved areas.

### What we can activate today

- Lit transport/WAVE services at regional POPs near the corridor (subject to carrier feasibility).
- Cross-connect options: meet-me room, 100/400G handoffs; rack/power on request.
- Regional long-haul reach via multiple networks (agreements required).

### Build plan


- Phase 1: Primary lateral to POP #1 (Marks); campus handoff established.
- Phase 2 (optional): Second lateral to POP #2 (Greenwood) for diversity; optional dark fiber/IRU where supported.
- CAI drops added where feasible to strengthen BEAD eligibility.

### Ops & SLA

- Target availability 99.99%+ with route diversity; protected/unprotected service options.
- Acceptance testing (OTDR/IOLM) with documented loss budgets; as-builts delivered.
- Restoration SLAs available from carriers; A-to-Z terms vary by provider.



## GRADING & CAMPUS FRAMEWORK (Concept • Not to Scale)





#### What we have on file (under NDA):

- Prior Jurisdictional Determination (2012) for the broader industrial park; updated 2025 streams/wetlands delineation aligned to current regs.
- Cultural resources (park-wide Phase I): archaeological sites were identified elsewhere in the park; no recorded sites within the subject tract.
- Utility letters, incl. TC Energy daily deliverability correspondence; local grid notes.
- Survey, geotech, and environmental summaries.
- Balanced earthwork plan & bench strategy (see grading exhibits in brochure).
- Preliminary engineering transferable at close; final pad counts/sequence by buyer.

#### Why it matters for a buyer:

- Clear path to confirm JD status specific to this tract with minimal re-work.
- No known archaeological constraints on the subject tract based on prior park-wide work (buyer can verify via targeted Phase I addendum).
- Faster DD: organized data room; grading/bench plan shortens sitework scoping.

*Conceptual exhibits shown at intentionally reduced resolution and not to scale. Final design, quantities, and approvals by buyer.*

#### DILIGENCE READY + INCENTIVES SNAPSHOT

#### Incentives Snapshot

- **Regional momentum:** AWS announced a \$10B Mississippi data-center program; state offered a benchmark package (public record) including corporate income-tax exemption, sales/use tax relief, and workforce programs.  
*Note: incentives are project-specific and subject to approvals.*
- **State-level tools for data centers:** corporate income-tax relief, sales/use exemptions, workforce programs (per MS benchmarks).
- **Local options (subject to approvals):** TIF / PILOT/PILOT-style mechanisms.
- **Workforce:** NVIDIA-aligned upskilling and regional programs growing quickly.
- **Momentum:** recent hyperscale wins in central Mississippi support AI growth narrative.

*Incentives shown as benchmarks from public announcements; actual awards depend on project scope and approvals. No guarantees are implied.*



## COMMUNITY-SMART SITING &amp; OPERATIONS



## Neighborhood-Facing Highlights

- *Inward-facing recips*
- *Chillers opposite neighborhood*
- *Stacks centralized • High-ground*
- *Quiet-edge substations*
- *Detention ≤ existing release*
- *Grass-first corridors*

Conceptual siting shown. Final acoustics/dispersion, drainage sizing, and routing to be validated in detailed engineering and permitting.

## Community-Smart Siting &amp; Operations

- *Low-water by default. Central plant loops CHW S/R; secondary chiller heat. Chiller halls oppose the residential edge, facing inward; low-sound fans; natural setbacks via grass-first corridors.*
- *Stacks centralized on the site's highest ground, oriented inward for improved dispersion and reduced line-of-sight to the edge.*
- *Recip yards face inward; warehouse/maintenance form a built buffer between neighborhood and substations/CCPP.*
- *Substations present the “quiet side” to the edge; short pulls to the grid pads.*
- *Drainage follows existing patterns; detention sized to ≤ existing release toward the neighborhood.*
- *Grass-dominant corridors reduce heat-island and improve infiltration vs. continuous pavement; selective stone/paved sections handle heavy vehicles and transitions.*
- *Sanitary by gravity to American Way; IWW via on-site WQP (reuse); permitted surplus only per final design.*
- *Walking-trail greenbelt frames an orderly, quiet, resilient campus.*

GRENADA BUSINESS & TECHNOLOGY PARK

459 AC | 2 GW+ BEHIND-THE-METER VISION

TIER IV / 2N INTENT

AI DATA CENTER DEVELOPMENT



EXIT 211 TO AMERICAN WAY | GRENADA, MS

**CROSSDOCK**  
DEVELOPMENT

DATA CENTER CAMPUS – YOUR TOUR BEGINS HERE



Video Flyover



Video Utilities

TQRCG



## At-a-Glance Highlights

- 459 AC contiguous | single-tract sale preferred.
- ~2.5M SF campus concept ( $\approx 20 \times 125$ k SF buildings).
- Behind-the-meter AI campus engineered for 2 GW+ delivery; ~100 MW per building backup via modular recips (20–50 MW blocks).
- Gas on-site: 3x Columbia Gulf transmission lines; ~484k Dth/day deliverability (per TC Energy correspondence).
- Power ramp: ~200 MW ~14 months post-close; +300 MW +12 months (to ~500 MW); CCPP to 2.4 GW thereafter; recips transition to backup.
- Private multi-utility corridors reserved (gas, CHW S/R, private-wire A/B feeders, fire/controls) kept outside building pads.
- Access: two nearby I-55 interchanges; controlled entries; laydown/staging inside perimeter.
- Grading grant: \$4.3M secured → bench-ready pads; balanced earthwork & storm routing.
- Low-water, heat-assist central plant; chiller halls opposite the residential edge.
- Grass-first corridors; selective stone; primary drives/aprons paved for reliability.
- A/B off-pavement feeders with switchable nodes; organized, sectionalized distribution.
- Sanitary → American Way (gravity); IWW via on-site WQP (reuse); permitted surplus only per final design.
- Fiber (concept): private owned lateral to regional POP/IXP (Zayo/Windstream) with dual-path routing along existing utility corridors.
- Incentives: Mississippi DC toolkit; AWS \$10B state announcement sets public benchmark (programs are project-specific/approval-based).
- Diligence-ready: prior park-wide JD; updated 2025 streams/wetlands; survey, geotech, and environmental summaries available under NDA.

**One of the most power-dense, execution-ready AI campuses in the United States**

### Why teams are calling Grenada uniquely power-dense

- On-site gas at scale: 3x Columbia Gulf transmission lines across the tract; ~484k Dth/day deliverability (per TC Energy correspondence).
- 2 GW+ BTM platform: 2.4 GW CCPP with modular reciprocating engines; ~100 MW per building backup (N+1) via 20–50 MW recip blocks.
- Fast ramp to load: ~200 MW in ~14 months, then +300 MW +12 months (~500 MW) while CCPP builds out.
- Campus density by design: ~2.5M SF across ~20 buildings on 459 AC with private multi-utility corridors kept outside pads.
- Access that scales: two nearby I-55 interchanges, controlled entries, and internal laydown/staging.
- Standardized buildings and copy-exact utility kits deliver repeatable phases, shorter runs, and easier maintenance.
- Incentive momentum: MS data-center toolkit; AWS \$10B state announcement provides a public benchmark for programs (project-specific/approval-based).

**Decide for yourself.**

**Ask for the engineering packet and data-room invite:**

Scott Moser • [smoser@crossdockdevelopment.com](mailto:smoser@crossdockdevelopment.com) • 502-716-0659  
Lee Wilburn • [lwilburn@crossdockdevelopment.com](mailto:lwilburn@crossdockdevelopment.com) • 502-939-7909

*Conceptual only. Behind-the-meter campus; no utility export assumed. Delivery/ownership/funding of utilities/facilities to be defined by buyer/seller/power owner. Incentives are program-specific and subject to approvals.*