LIMITED PHASE II ENVIRONMENTAL SITE ASSESSMENT

Market Property 13321 Artesia Boulevard Cerritos, California 90703

Prepared for:

Prepared by:

23840 Hawthorne Boulevard, Suite 100 Torrance, California 90505 (310) 373-0159 / Fax (310) 373-0179

CCI Project Number: CC2503-1 March 31, 2022

23840 Hawthorne Boulevard, Suite 100 Torrance, California 90505

CCI Project Number: CC2503-1 March 31, 2022

LIMITED PHASE II ENVIRONMENTAL SITE ASSESSMENT Market Property 13321 Artesia Boulevard Cerritos, California 90703

Prepared by:

en Durand

Ken Durand, PG 5630 Senior Geologist

Reviewed by:

David Jonas Project Manager

TABLE OF CONTENTS

PAGE

1.0	PRC	PERTY DESCRIPTION 1	1
	1.1	PROPERTY LOCATION 1	1
	1.2	PROPERTY HISTORY 1	1
	1.3	SCOPE OF WORK COMPLETED 1	1
2.0	ASS	ESSMENT ACTIVITIES	3
	2.1	PRE-FIELDWORK ACTIVITIES	3
	2.2	SOIL SAMPLING ACTIVITIES	3
	2.3	SOIL VAPOR SAMPLING ACTIVITIES	3
	2.4	SOIL ANALYTICAL LABORATORY RESULTS	4
	2.5	SOIL VAPOR ANALYTICAL LABORATORY RESULTS	5
	2.6	SOIL VAPOR INTRUSION	7
3.0	COI	NCLUSIONS AND RECOMMENDATIONS	9
	3.1	SOIL CONCLUSIONS	9
	3.2	SOIL VAPOR CONCLUSIONS	9
	3.3	RECOMMENDATIONS 10	0
4.0	LIM	IITATIONS	1

APPENDICES

APPENDIX A - FIGURES APPENDIX B - TABLES APPENDIX C - PHOTOGRAPHS APPENDIX D - ANALYTICAL LABORATORY DATA SHEETS

1.0 PROPERTY DESCRIPTION

1.1 PROPERTY LOCATION

CCI conducted a Limited Phase II Environmental Site Assessment (ESA) at 13321 Artesia Boulevard, Cerritos, Los Angeles County, California (Property). The Property is located at the northwest corner of the intersection of Artesia Boulevard and Carmenita Road (refer to Figure 1 in Appendix A).

1.2 PROPERTY HISTORY

CCI completed a Phase I ESA of the Property on September 27, 2018. According to this report, the Property consisted of an irregular-shaped parcel approximately 92,870 square-feet in area and was developed with a square-shaped building approximately 23,200 square-feet in size. The single-story concrete-block grocery store building was constructed on the Property approximately in 1970. Adjacent to the west of the building was a sub-grade loading dock and asphalt-paved parking lot. Adjacent to the east of the building was an asphalt-paved parking lot. The Property was currently an abandoned Good Fortune Supermarket along with the associated parking lots and loading dock. Based on the findings of the Phase I ESA, CCI recommended the collection of soil vapor samples on the Property due to the presence of a dry cleaning facility located in the commercial building adjacent to the north-northeast of the Property building.

1.3 SCOPE OF WORK COMPLETED

The scope of work conducted as part of this Phase II ESA included the evaluation of soil and soil vapor conditions through the installation of soil borings and soil vapor probes and the collection and analysis of select soil and soil vapor samples. The following provides a summary of the tasks performed:

- 1. Prepared a Health and Safety Plan (H&SP) for use by CCI, as well as subcontractors, for the field activities conducted during this Phase II ESA.
- 2. Conducted the soil boring activities on March 25, 2022, using a direct-push rig to facilitate sample collection. The soil boring activities were conducted by Millennium Environmental, Inc. (Millennium) of Anaheim, California.
- 3. Five (5) soil borings (SV1-SV5) were advanced on the Property during this assessment. The soil borings were advanced inside the Property building. Soil borings SV1, SV4, and SV5 were advanced to total depths of 10-feet below ground surface (bgs). Soil samples were collected from these three soil boring locations at depths of 2-feet, 5-feet, and 10feet bgs. Soil borings SV2 and SV3 were advanced to total depths of 5-feet bgs. Soil samples were collected from these two soil boring locations at depths of 2-feet and 5-feet bgs.

- 4. The soil samples were delivered to Jones Environmental, Inc. (Jones), a State of California certified environmental laboratory located in Santa Fe Springs, California, for analysis. Two soil samples per soil boring were analyzed for volatile organic compounds (VOCs) using United States Environmental Protection Agency (US EPA) method 8260B.
- 5. The five (5) the soil borings were converted into temporary soil vapor probes. Temporary soil vapor probes were installed in the soil borings at a depth of 5-feet bgs. The temporary soil vapor probes were allowed to equilibrate for at least two (2) hours prior to sampling. On March 25, 2022, soil vapor samples were collected from these temporary soil vapor probes in general accordance with Department of Toxic Substances Control (DTSC) sampling guidance. The soil vapor samples were collected by Jones using tedlar bags and were analyzed for VOCs using US EPA method 8260B.
- 6. Backfilled the soil borings and completed the ground surface to best match the existing ground surface.
- 7. Prepared this report documenting the completed fieldwork activities and the analytical laboratory results.

2.0 ASSESSMENT ACTIVITIES

2.1 PRE-FIELDWORK ACTIVITIES

A Property specific H&SP was prepared for the project. Prior to initiating the fieldwork activities, the H&SP was reviewed by all field personnel and maintained on the Property during the field activities.

2.2 SOIL SAMPLING ACTIVITIES

On March 25, 2022, five (5) soil borings (SV1 -SV5) were advanced on the Property. Please refer to Figure 2 in Appendix A for a map showing the soil boring locations. The soil borings were advanced using a direct-push Geoprobe® sampling rig. The Geoprobe® sampling rig utilizes direct push technology to collect soil samples from specific subsurface depths without generating soil cuttings. The Geoprobe® sampling system consists of a series of 1.5-inch diameter hollow stainless steel rods which were hydraulically driven into the ground using a pneumatic hammer. Soil samples were then collected by driving an approximately 4-foot long stainless steel sample sleeve attached to the end of the steel rods into soil at a specified sample depth. Soil samples were then collected in an acetate sample tube installed inside the sample sleeve. A new acetate sample tube was used at each sample interval/location to avoid cross-contamination between sampling points. After the rod assembly was hydraulically extended to the target sample depth, the sample sleeve was retrieved to ground surface and the acetate sample tube containing soil from the appropriate sample interval was removed from the stainless steel rod. The tube was then cut with a hand saw into a 6-inch section and capped with Teflon®-lined end caps. A portion of each soil sample was also transferred into 40ml VOAs in accordance with US EPA sampling method 5035 protocols for VOC analysis. The samples were then labeled with unique identification, sealed inside a Ziplock® bag, and placed in a chest cooled with ice for delivery to the analytical laboratory. CCI recorded the unique sample identification information on a chain-of-custody form.

2.3 SOIL VAPOR SAMPLING ACTIVITIES

On March 25, 2022, the five (5) of the soil borings were converted into temporary soil vapor probes. Temporary soil vapor probes were installed in these soil borings at a depth of 5-feet bgs. A 1-foot thick sand pack was placed around the probe tips followed by a 1-foot thick dry bentonite layer and then a hydrated bentonite layer to complete the temporary soil vapor probe construction.

After the temporary soil vapor probes were allowed to equilibrate for at least two (2) hours, soil vapor samples were collected from the temporary soil vapor probes. The soil vapor samples were collected on March 25, 2022. The soil vapor sampling was conducted by Jones. Soil vapor samples were collected into tedlar bags. The tubing placed in the ground was purged three times as recommended by DTSC regulations. The sampling rate was approximately 200 cc/min.

Prior to the purging and sampling of the soil vapor at each point, a shut-in test was conducted to check for leaks in the above ground fittings. The shut-in test was performed on the above ground

apparatus by evacuating the line to a vacuum of 100 inches of water, sealing the entire system, and watching the vacuum for some length of time. A vacuum gauge attached in parallel to the apparatus measured the vacuum. If there was any observable loss of vacuum, the fittings were adjusted as needed until the vacuum did not change noticeably.

A tracer gas mixture of n-pentane, n-hexane, and n-heptane was then placed at the tubing-surface interface before sampling and the soil vapor samples were collected. These compounds were analyzed during the 8260B analytical run to determine if there were surface leaks into the subsurface due to improper installation of the probes. No n-pentane, n-hexane, or n-heptane was found in the soil vapor samples analyzed during this Phase II ESA.

2.4 SOIL ANALYTICAL LABORATORY RESULTS

The soil samples were delivered to Jones. Two soil samples collected from each of the soil borings were analyzed for VOCs using US EPA method 8260B. The VOC analytical results were compared with their respective San Francisco Regional Water Quality Control Board (SF-RWQCB) Environmental Screening Levels (ESLs) for commercial/industrial soil. Table 1 summarizing the analytical results can be found in Appendix B of this report. A copy of the analytical data report can be found in Appendix D of this report. The results of the analysis detected the following:

Soil Boring SV1

Soil boring SV1 was advanced in the northeast corner of the Property which is the closest portion of the building to the adjacent dry cleaners. The soil samples collected from 5-feet and 10-feet bgs were analyzed for VOCs. The results of the analysis did not detect concentrations of the targeted VOCs above their respective practical quantitation limits (PQLs) in soil samples SV1-5 and SV1-10.

Soil Boring SV2

Soil boring SV2 was advanced inside the Property building along the northern wall. The soil samples collected from 2-feet and 5-feet bgs were analyzed for VOCs. The results of the analysis did not detect concentrations of the targeted VOCs above their respective PQLs in soil samples SB2-2 and SB2-5.

Soil Boring SV3

Soil boring SV3 was advanced inside the property building along the eastern wall. The soil samples collected from 2-feet and 5-feet bgs were analyzed for VOCs. The results of the analysis detected concentrations of the following VOCs in soil sample SV3-2:

- Benzene at a concentration of 0.0052 milligrams per kilogram (mg/kg). The ESL for benzene is 1.4 mg/kg. The detected benzene concentration in soil sample SV3-2 did not exceed the respective ESL.
- Toluene at a concentration of 0.0029 mg/kg. The ESL for toluene is 5,300mg/kg. The detected toluene concentration in soil sample SV3-2 did not exceed the respective ESL..

The results of the analysis did not detect concentrations of the other targeted VOCs above their respective PQLs in soil sample SV3-2.

The results of the analysis did not detect concentrations of the targeted VOCs above their respective imits PQLs in soil sample SV3-5.

Soil Boring SV4

Soil boring SV4 was advanced approximately in the center of the Property building. The soil samples collected from 5-feet and 10-feet bgs were analyzed for VOCs. The results of the analysis did not detect concentrations of the targeted VOCs above their respective PQLs in soil samples SV4-5 and SV4-10.

Soil Boring SV5

Soil boring SV5 was advanced inside the Property building in the southwestern corner. The soil samples collected from 5-feet and 10-feet bgs were analyzed for VOCs. The results of the analysis detected a concentration of the following VOC in soil sample SV5-5:

• Benzene at a concentration of 0.0019 mg/kg. The ESL for benzene is 1.4 mg/kg. The detected benzene concentration in soil sample SV5-5 did not exceed the respective ESL.

The results of the analysis did not detect concentrations of the other targeted VOCs above their respective PQLs in soil sample SV5-5.

The results of the analysis detected a concentration of the following VOC in soil sample SV5-10:

• Benzene at a concentration of 0.0011 mg/kg. The ESL for benzene is 1.4 mg/kg. The detected benzene concentration in soil sample SV5-10 did not exceed the respective ESL.

The results of the analysis did not detect concentrations of the other targeted VOCs above their respective PQLs in soil sample SV5-10.

2.5 SOIL VAPOR ANALYTICAL LABORATORY RESULTS

The soil vapor samples were collected by Jones personnel and were analyzed for VOCs using US EPA method 8260B at their fixed laboratory located in Santa Fe Springs, California. The analytical results were compared with their respective ESLs for commercial/industrial soil gas. Table 2 summarizing the analytical results can be found in Appendix B of this report. A copy of the analytical data report can be found in Appendix D of this report. The results of the analysis detected the following:

Soil Vapor Probe SV1-5'

Soil boring SV1 was converted into a temporary vapor probe with the soil vapor probe set at 5-feet bgs. The soil vapor sample collected from this probe was analyzed for VOCs. The results of the analysis of soil vapor sample SV1-5' detected concentrations of the following VOCs:

• Chloroform at a concentration of 19 micrograms per cubic meter ($\mu g/m^3$). The ESL for chloroform is 18 $\mu g/m^3$. The detected chloroform concentration in soil vapor sample

SV1-5' exceeded the respective ESL.

- Dichlorodiflourmethane at a concentration of 33 μ g/m³. An ESL for dichlorodiflourmethane is not specified.
- Tetracholoroethene (PCE) at a concentration of 123 μ g/m³. The ESL for PCE is 67 μ g/m³. The detected PCE concentration in soil vapor sample SV1-5' exceeded the respective ESL.

Concentrations of the other targeted VOCs were not detected above their respective PQLs in soil vapor sample SV1-5'.

Soil Vapor Probe SV2-5'

Soil boring SV2 was converted into a temporary vapor probe with the soil vapor probe set at 5-feet bgs. The soil vapor sample collected from this probe was analyzed for VOCs. The results of the analysis of soil vapor sample SV2-5' detected concentrations of the following VOCs:

- Chloroform at a concentration of 19 μ g/m³. The ESL for chloroform is 18 μ g/m³. The detected chloroform concentration in soil vapor sample SV2-5' exceeded the respective ESL.
- Dichlorodiflourmethane at a concentration of 39 μ g/m³. An ESL for dichlorodiflourmethane is not specified.
- PCE at a concentration of 58 μ g/m³. The ESL for PCE is 67 μ g/m³. The detected PCE concentration in soil vapor sample SV2-5' did not exceed the respective ESL.

Concentrations of the other targeted VOCs were not detected above their respective PQLs in soil vapor sample SV2-5'.

Soil Vapor Probe SV3-5'

Soil boring SV3 was converted into a temporary vapor probe with the soil vapor probe set at 5-feet bgs. The soil vapor sample collected from this probe was analyzed for VOCs. The results of the analysis of soil vapor sample SV3-5' detected concentrations of the following VOCs:

- Chloroform at a concentration of $12 \ \mu g/m^3$. The ESL for chloroform is $18 \ \mu g/m^3$. The detected chloroform concentration in soil vapor sample SV3-5' did not exceed the respective ESL.
- Dichlorodiflour methane at a concentration of 55 μ g/m³. An ESL for dichlorodiflour methane is not specified.
- PCE at a concentration of 394 μ g/m³. The ESL for PCE is 67 μ g/m³. The detected PCE concentration in soil vapor sample SV3-5' exceeded the respective ESL.
- Trichlorofluoromethane at a concentration of 16 μ g/m³. An ESL for trichlorofluoromethane is not specified.

Concentrations of the other targeted VOCs were not detected above their respective PQLs in soil vapor sample SV3-5'.

Soil Vapor Probe SV4-5'

Soil boring SV4 was converted into a temporary vapor probe with the soil vapor probe set at 5-feet bgs. The soil vapor sample collected from this probe was analyzed for VOCs. The results of the analysis of soil vapor sample SV4-5' detected concentrations of the following VOCs:

- Chloroform at a concentration of $97\mu g/m^3$. The ESL for chloroform is $18 \ \mu g/m^3$. The detected chloroform concentration in soil vapor sample SV4-5' exceeded the respective ESL.
- PCE at a concentration of 170 μ g/m³. The ESL for PCE is 67 μ g/m³. The detected PCE concentration in soil vapor sample SV4-5' exceeded the respective ESL.
- Toluene at a concentration of 16 μ g/m³. The ESL for toluene is 44,000 μ g/m³. The detected toluene concentration in soil vapor sample SV4-5' did not exceed the respective ESL.
- Trichlorofluoromethane at a concentration of 32 μ g/m³. An ESL for trichlorofluoromethane is not specified.

Concentrations of the other targeted VOCs were not detected above their respective PQLs in soil vapor sample SV4-5'.

Soil Vapor Probe SV5-5'

Soil boring SV5 was converted into a temporary vapor probe with the soil vapor probes set at 5-feet bgs. The soil vapor sample collected from this probe wase analyzed for VOCs. The results of the analysis of soil vapor sample SV5-5 detected concentrations of the following VOCs:

- Chloroform at a concentration of $76\mu g/m^3$. The ESL for chloroform is $18 \ \mu g/m^3$. The detected chloroform concentration in soil vapor sample SV5-5' exceeded the respective ESL.
- Dichlorodiflour methane at a concentration of 39 $\mu g/m^3.$ An ESL for dichlorodiflour methane is not specified.
- PCE at a concentration of $14 \ \mu g/m^3$. The ESL for PCE is 67 $\ \mu g/m^3$. The detected PCE concentration in soil vapor sample SV5-5' did not exceed the respective ESL.
- Trichlorofluoromethane at a concentration of 41 μ g/m³. An ESL for trichlorofluoromethane is not specified.

Concentrations of the other targeted VOCs were not detected above their respective PQLs in soil vapor sample SV5-5'.

2.6 SOIL VAPOR INTRUSION

A preliminary screening evaluation of the soil vapor analytical data generated during this assessment was performed according to the DTSC's *Guidance for the Evaluation and Mitigation of Subsurface Vapor Intrusion to Indoor Air* document dated October 2011. The following ratio was used to calculate the theoretical indoor air concentrations based on a default attenuation factor (α) provided in the DTSC document:

$$\alpha = C_{indoor} / C_{soil gas}$$

The default attenuation factor (0.001) used for the preliminary screening evaluation was based on the current commercial structure. The calculated theoretical indoor air concentrations were compared with their respective ESLs for commercial/industrial air. The results of the preliminary screening evaluation did not identify theoretical indoor air concentrations of the detected VOCs above their respective ESLs, if specified. Table 3, which can be found in Appendix B of this report, summarizes the calculated theoretical indoor air concentrations for the compounds detected in the soil vapor samples.

A preliminary screening evaluation of the soil vapor analytical data generated during this assessment was also performed according to the Regional Water Quality Control Board's (RWQCB's) and DTSC's *Supplemental Guidance: Screening and Evaluating Vapor Intrusion, Draft for Public Comments,* document dated February 2020. This Supplemental Guidance recommends the use of US EPA empirically-derived attenuation factors. The default attenuation factor for most building occupancy scenarios is 0.03. The calculated theoretical indoor air concentrations using this (0.03) attenuation factor were compared with their respective ESLs for commercial/industrial air. The calculated theoretical indoor air concentration were above their respective ESLs, if specified, in the following samples:

- Chloroform at 0.57 μ g/m³ in SV1-5'. The ESL for commercial/industrial air for chloroform 0.53 μ g/m³.
- Chloroform at 0.57 μ g/m³ in SV2-5'. The ESL for commercial/industrial air for chloroform 0.53 μ g/m³.
- Chloroform at 2.91 μ g/m³ in SV4-5'. The ESL for commercial/industrial air for chloroform 0.53 μ g/m³.
- Chloroform at 2.28 μ g/m³ in SV5-5'. The ESL for commercial/industrial air for chloroform 0.53 μ g/m³.
- PCE at 3.69 μ g/m³ in SV1-5. The ESL for commercial/industrial air for PCE is 2.0 μ g/m³.
- PCE at 11.82 μ g/m³ in SV3-5. The ESL for commercial/industrial air for PCE is 2.0 μ g/m³.
- PCE at 5.10 μ g/m³ in SV4-5. The ESL for commercial/industrial air for PCE is 2.0 μ g/m³.

The results of the preliminary screening evaluation did not identify other theoretical indoor air concentrations of the detected VOCs above their respective ESLs, if specified. Table 6, which can be found in Appendix B of this report, summarizes the calculated theoretical indoor air concentrations for the compounds detected in the soil vapor samples.

3.0 CONCLUSIONS & RECOMMENDATIONS

3.1 SOIL CONCLUSIONS

The purpose of this Phase II ESA was to assess whether the operation of a dry cleaning facility, located in the commercial building adjacent to the north-northeast of the Property building, adversely impacted the subsurface soil and/or soil vapor beneath the Property building. Five (5) soil borings (SV1 - SV5) were advanced on the Property during this assessment. Two soil samples collected from each of the soil borings were analyzed for VOCs. The VOC analytical results were compared with their respective SF-RWQCB ESLs for commercial/industrial soil.

The results of the soil analysis detected minor concentrations of benzene and/or toluene in three of the ten soil samples analyzed. The detected concentrations of benzene and toluene did not exceed their respective ESLs. Concentrations of the other targeted VOCs were not detected above their respective PQLs and, therefore, did not exceed their respective ESLs. Based on the above results, the soil beneath the Property building does not appear to have been adversely impacted by the operations of the adjacent dry cleaning facility.

3.2 SOIL VAPOR CONCLUSIONS

The five (5) soil borings were converted into temporary soil vapor probes with the probes set at 5-feet bgs. Soil vapor samples were collected from the temporary soil vapor probes and were analyzed for VOCs. The analytical results were compared with their respective SF-RWQCB ESLs for commercial/industrial soil gas.

The results of the soil vapor analysis detected concentrations of chloroform, dichlorodifluormethane, PCE, toluene, and/or trichlorofloromethane in the soil vapor samples at concentration above their respective PQLs. However, with the exception of chloroform and PCE, the detected concentrations did not exceed their respective ESLs for commercial/industrial soil gas. Chloroform was detected at concentrations which exceeded the respective ESL in four (4) of the samples (SV1-5, SV2-5, SV4-5, and SV5-5) analyzed. PCE was detected at concentration which exceeded the respective ESL in three (3) of the samples (SV1-5, SV3-5, and SV5-5) analyzed.

A preliminary screening evaluation of the soil vapor analytical data was performed according to the DTSC *Guidance for the Evaluation and Mitigation of Subsurface Vapor Intrusion to Indoor Air* document. The default attenuation factor (0.001) used for the preliminary screening evaluation to calculate theoretical indoor air concentrations was based on the current commercial structure use. The calculated theoretical indoor air concentrations were compared with their respective ESLs for commercial/industrial air. The results of the preliminary screening evaluation did not identify theoretical indoor air concentrations of the detected VOCs above their respective ESLs, if specified.

A preliminary screening evaluation of the soil vapor analytical data was also performed according to the RWQCB's and DTSC's *Supplemental Guidance: Screening and Evaluating Vapor Intrusion*,

Draft for Public Comments, document dated February 2020. The US EPA empirically-derived attenuation factor for most building occupancy scenarios of 0.03 was used for this evaluation. Based on these calculations, both the chloroform and PCE concentrations detected in the soil vapor samples exceeded their respective ESLs for commercial/industrial air.

Based on the above results, since the calculated theoretical indoor air concentration of chloroform and PCE exceeded their respective ESLs for commercial/industrial air, a potential vapor encroachment condition (VEC) for the Property building cannot be out.

PCE is a common cleaning chemical used in the dry cleaning industry. Therefore, it is highly likely, that the detected concentrations of PCE in the subsurface soil vapors are the result of the adjacent former dry cleaners operations. The most common source of chloroform in soil vapor is the result of chlorinated water. Possible sources of the elevated chloroform detected in the soil vapor is from landscape irrigation or either a leak in the potable water or sewer piping.

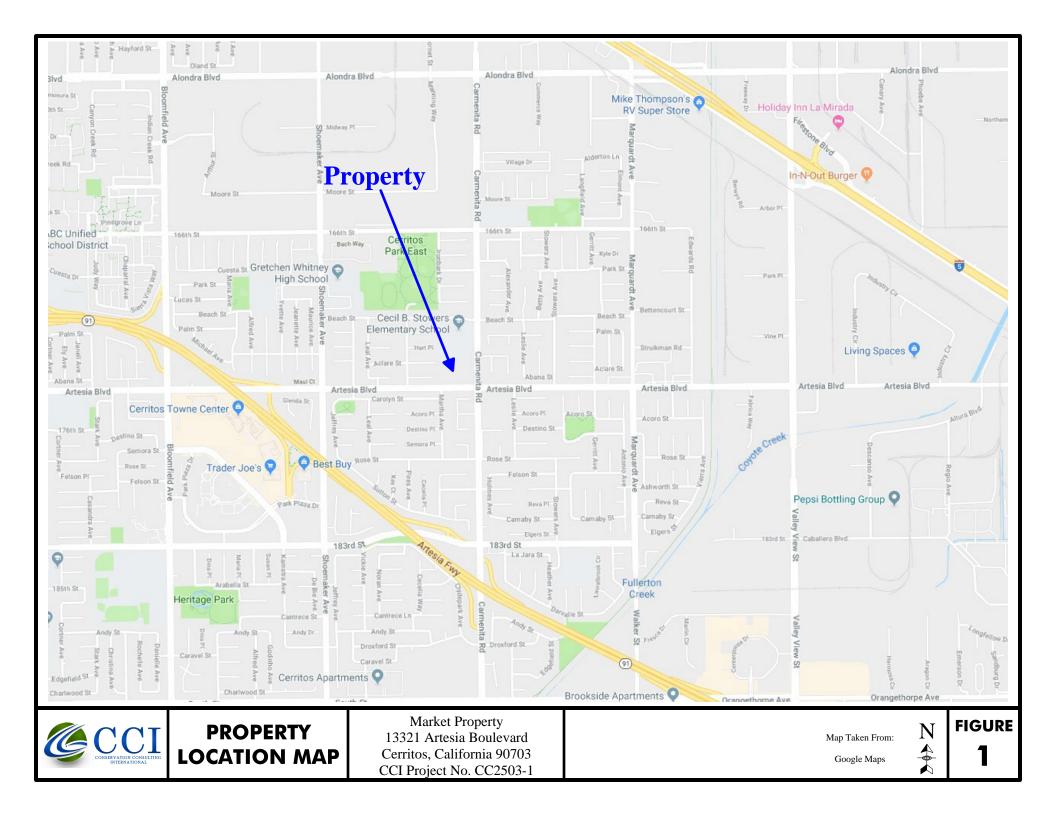
3.3 RECOMMENDATIONS

Since the theoretical indoor air concentrations did not exceed the current regulatory requirements but did exceed the proposed draft theoretical indoor air concentrations, depending on the User's desired level of confidence, an indoor air assessment could be performed inside the Property building to assess whether the detected soil vapors beneath the Property building have adversely impacted the indoor air quality inside the Property building. An indoor air assessment should include three (3) interior sample locations and one (1) exterior sample location for comparative purposes.

4.0 LIMITATIONS

This assessment was conducted according to accepted industry standards and guidelines for similar assessments conducted in this geographic region at this time.

The conclusions and recommendations of this assessment are based, in part, from information and data provided by others. CCI is not responsible for the accuracy or completeness of this information. Inaccurate data, or information that was not found or made available to CCI, may result in a modification of our conclusions and recommendations.


In today's technology, no amount of assessment can ascertain that the Property is completely free of environmental concern. This assessment is not intended to be all inclusive, identify all potential concerns, or wholly eliminate the possibility of the Property having environmental risks. It is possible that variations in unpermitted, undocumented, or concealed improvements or alterations to the Property could exist beyond what was found during this assessment. Future changes in observed conditions on the Property could occur due to variations in environmental and physical conditions.

USER RELIANCE

This report may be distributed and relied upon by United Family Limited Partnership, its successors and assigns. Reliance on the information and conclusions of this report by any other person or entity is not authorized without the written consent of CCI. This report is not legal opinion and does not offer warranties or guarantees.

APPENDIX A - FIGURES

Market Property 13321 Artesia Boulevard Cerritos, California 90703 CCI Project No. CC2503-1

• SV5 Soil Boring/Vapor Probe Location

APPENDIX B - TABLES

Table 1 - Analytical Laboratory Results (Soil Samples) Volatile Organic Compounds By US EPA Method 5035/8260B

13321 Artesia Boulevard Cerritos, California CCI Project Number: CC2503-1

Seconda ID	Analytical Laboratory Res	ults, mg/kg (milligrams per kilogra	am, or parts per million)
Sample ID	Benzene	Toluene	Other VOCs ¹
SV1-5	ND^2	ND	ND
SV1-10	ND	ND	ND
SV2-5	ND	ND	ND
SV2-5	ND	ND	ND
SV3-2	0.0052	0.0029	ND
SV3-5	ND	ND	ND
SV4-5	ND	ND	ND
SV4-10	ND	ND	ND
SV5-5	0.0019	ND	ND
SV5-10	0.0011	ND	ND
ESL-C ³	1.4	5,300	

¹VOCs- Volatile Organic Compounds

²ND - Non-Detectable

¹ESL-C -Environmental Screening Levels for Commercial/Industrial Soil

Table 2 - Analytical Laboratory Results (Soil Vapor Samples)Volatile Organic CompoundsBy US EPA Method 8260B

13321 Artesia Boulevard Cerritos, California CCI Project Number: CC2503-1

		Sample Identification micrograms per cubic meter (µg/m ³)							
Target Analyte	SV1-5'	SV2-5'	SV3-5'	SV4-5'	SV5-5'	ESLs ¹			
Chloroform	19	19	12	97	76	18			
Dichlorodifluormethane	33	39	55	ND^2	39	NS ³			
Tetrachloroethene (PCE)	123	58	394	170	14	67			
Toluene	ND	ND	ND	16	ND	44,000			
Trichlorofluoromethane	ND	ND	16	32	41	NS			
Other VOCs ⁴	ND	ND	ND	ND	ND				

¹ESLs - Environmental Screening Levels for Commercial/Industrial Soil Gas

²ND - Non-Detect above the practical quantitation limits

³NS - Not Specified

⁴VOCs - Volatile Organic Compounds

Bold face type indicates concentration that exceeds the respective ESL

Table 3 - Analytical Laboratory Results (Soil Vapor)*Commercial Default Attenuation Factor13321 Artesia BoulevardCerritos, CaliforniaCCI Project Number: CC2503-1

	Analytical Laboratory Results, µg/m ³ (micrograms per cubic meter)									
Target Analyte	SV1-5'	SV2-5'	SV3-5'	SV4-5'	SV5-5'	ESLs-C ¹				
Chloroform	0.019	0.019	0.012	0.097	0.076	0.53				
Dichlorodifluormethane	0.033	0.039	0.055		0.039	NS^2				
Tetrachloroethene (PCE)	0.123	0.058	0.394	0.170	0.014	2.0				
Toluene				0.016		1,300				
Trichlorofluoromethane			0.016	0.032	0.041	NS				
Other VOCs ³										

*The DTSC Current Commercial Default Attenuation Factor of 0.001 was used to calculate the theoretical indoor air concentrations. ¹ESLs-C - Environmental Screening Levels for Commercial Air

²NS - Not Specified

³VOCs - Volatile Organic Compounds

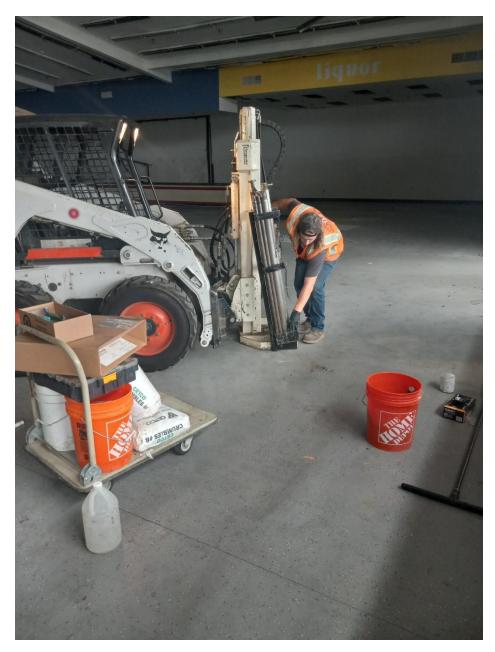
Bold face type indicates concentrations exceeding the respective ESL

Table 4 - Analytical Laboratory Results (Soil Vapor)*Draft February 2020 Default Attenuation Factor13321 Artesia BoulevardCerritos, CaliforniaCCI Project Number: CC2503-1

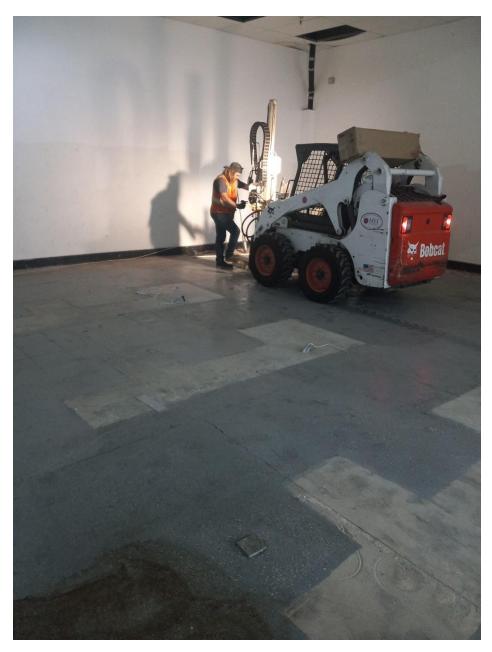
T	Analytical Laboratory Results, $\mu g/m^3$ (micrograms per cubic meter)								
Target Analyte	SV1-5'	SV2-5'	SV3-5'	SV4-5'	SV5-5'	ESLs-C ¹			
Chloroform	0.57	0.57	0.36	2.91	2.28	0.53			
Dichlorodifluormethane	0.99	1.17	1.65		1.17	NS ²			
Tetrachloroethene (PCE)	3.69	1.17	11.82	5.10	0.42	2.0			
Toluene				0.48		1,300			
Trichlorofluoromethane			0.48	0.96	1.23	NS			
Other VOCs ³									

*The DTSC/RWQCB Draft Commercial Default Attenuation Factor of 0.03 was used to calculate the theoretical indoor air concentrations.

¹ESLs-C - Environmental Screening Levels for Commercial Air


²NS - Not Specified

³VOCs - Volatile Organic Compounds


Bold face type indicates concentrations exceeding the respective ESL

APPENDIX C - PHOTOGRAPHS


=

Photograph 1: View of the soil boring/sampling activities.

Photograph 2: View of the soil boring/sampling activities.

Photograph 3: View of the soil vapor sampling activities.

APPENDIX D - ANALYTICAL LABORATORY DATA SHEETS

11007 FOREST PLACE Santa Fe Springs, ca 90670 WWW.Jonesenv.com

JONES ENVIRONMENTAL LABORATORY RESULTS

Client: Client Address:	Conservation Consulting International 23862 Hawthorne Blvd. Torrance, CA 90505	Report date: Jones Ref. No.: Client Ref. No.:	3/30/2022 ST-19418 2503-1
Attn:	Ken Durand	Date Sampled:	3/25/2022
		Date Received:	3/25/2022
Project:	Cerritos	Date Analyzed: Physical State:	3/28/2022 Soil

ANALYSES REQUESTED

Soil:

EPA 8260B by 5035 - Volatile Organics by GC/MS + Oxygenates 1.

Approval:

Juan Camacho

Juan Camacho, M.S. Stationary Lab Technical Manager

Client: Client Address:	Conservation Consulting International 23862 Hawthorne Blvd. Torrance, CA 90505	Report date: Jones Ref. No.: Client Ref. No.:	3/30/2022 ST-19418 2503-1
Attn:	Ken Durand	Date Sampled: Date Received:	3/25/2022 3/25/2022
Project:	Cerritos	Date Analyzed: Physical State:	0, _0, _0

Sample ID:	SV3-2	SV3-5	SV1-5	SV1-10	SV2-2		
Jones ID:	ST-19418-01	ST-19418-02	ST-19418-04	ST-19418-05	ST-19418-06	<u>Reporting Limit</u>	<u>Units</u>
Analytes:							
Benzene	5.2	ND	ND	ND	ND	1.0	μg/kg
Bromobenzene	ND	ND	ND	ND	ND	1.0	μg/kg
Bromodichloromethane	ND	ND	ND	ND	ND	1.0	µg/kg
Bromoform	ND	ND	ND	ND	ND	1.0	μg/kg
n-Butylbenzene	ND	ND	ND	ND	ND	1.0	µg/kg
sec-Butylbenzene	ND	ND	ND	ND	ND	1.0	μg/kg
tert-Butylbenzene	ND	ND	ND	ND	ND	1.0	µg/kg
Carbon tetrachloride	ND	ND	ND	ND	ND	1.0	µg/kg
Chlorobenzene	ND	ND	ND	ND	ND	1.0	μg/kg
Chloroform	ND	ND	ND	ND	ND	1.0	µg/kg
2-Chlorotoluene	ND	ND	ND	ND	ND	1.0	µg/kg
4-Chlorotoluene	ND	ND	ND	ND	ND	1.0	µg/kg
Dibromochloromethane	ND	ND	ND	ND	ND	1.0	µg/kg
1,2-Dibromo-3-chloropropane	ND	ND	ND	ND	ND	1.0	μg/kg
1,2-Dibromoethane (EDB)	ND	ND	ND	ND	ND	1.0	μg/kg
Dibromomethane	ND	ND	ND	ND	ND	1.0	μg/kg
1,2- Dichlorobenzene	ND	ND	ND	ND	ND	1.0	μg/kg
1,3-Dichlorobenzene	ND	ND	ND	ND	ND	1.0	μg/kg
1,4-Dichlorobenzene	ND	ND	ND	ND	ND	1.0	μg/kg
1,1-Dichloroethane	ND	ND	ND	ND	ND	1.0	μg/kg
1,2-Dichloroethane	ND	ND	ND	ND	ND	1.0	μg/kg
1,1-Dichloroethene	ND	ND	ND	ND	ND	1.0	μg/kg
cis-1,2-Dichloroethene	ND	ND	ND	ND	ND	1.0	μg/kg
rans-1,2-Dichloroethene	ND	ND	ND	ND	ND	1.0	μg/kg
1,2-Dichloropropane	ND	ND	ND	ND	ND	1.0	μg/kg
1,3-Dichloropropane	ND	ND	ND	ND	ND	1.0	μg/kg
2,2-Dichloropropane	ND	ND	ND	ND	ND	1.0	μg/kg
1,1-Dichloropropene	ND	ND	ND	ND	ND	1.0	μg/kg
cis-1,3-Dichloropropene	ND	ND	ND	ND	ND	1.0	μg/kg

Sample ID:	SV3-2	SV3-5	SV1-5	SV1-10	SV2-2		
Jones ID:	ST-19418-01	ST-19418-02	ST-19418-04	ST-19418-05	ST-19418-06	Reporting Limit	<u>Units</u>
Analytes:							
trans-1,3-Dichloropropene	ND	ND	ND	ND	ND	1.0	µg/kg
Ethylbenzene	ND	ND	ND	ND	ND	1.0	μg/kg
Freon 11	ND	ND	ND	ND	ND	5.0	µg/kg
Freon 12	ND	ND	ND	ND	ND	5.0	µg/kg
Freon 113	ND	ND	ND	ND	ND	5.0	µg/kg
Hexachlorobutadiene	ND	ND	ND	ND	ND	1.0	µg/kg
sopropylbenzene	ND	ND	ND	ND	ND	1.0	μg/kg
4-Isopropyltoluene	ND	ND	ND	ND	ND	1.0	μg/kg
Methylene chloride	ND	ND	ND	ND	ND	1.0	μg/kg
Naphthalene	ND	ND	ND	ND	ND	1.0	μg/kg
n-Propylbenzene	ND	ND	ND	ND	ND	1.0	μg/kg
Styrene	ND	ND	ND	ND	ND	1.0	μg/kg
1,1,1,2-Tetrachloroethane	ND	ND	ND	ND	ND	1.0	μg/kg
1,1,2,2-Tetrachloroethane	ND	ND	ND	ND	ND	1.0	μg/kg
Fetrachloroethene	ND	ND	ND	ND	ND	1.0	μg/kg
Foluene	2.9	ND	ND	ND	ND	1.0	μg/kg
1,2,3-Trichlorobenzene	ND	ND	ND	ND	ND	1.0	μg/kg
1,2,4-Trichlorobenzene	ND	ND	ND	ND	ND	1.0	μg/kg
1,1,1-Trichloroethane	ND	ND	ND	ND	ND	1.0	μg/kg
1,1,2-Trichloroethane	ND	ND	ND	ND	ND	1.0	μg/kg
Frichloroethene	ND	ND	ND	ND	ND	1.0	μg/kg
1,2,3-Trichloropropane	ND	ND	ND	ND	ND	1.0	μg/kg
1,2,4-Trimethylbenzene	ND	ND	ND	ND	ND	1.0	μg/kg
1,3,5-Trimethylbenzene	ND	ND	ND	ND	ND	1.0	μg/kg
Vinyl chloride	ND	ND	ND	ND	ND	1.0	μg/kg
n,p-Xylene	ND	ND	ND	ND	ND	2.0	μg/kg
p-Xylene	ND	ND	ND	ND	ND	1.0	μg/kg
Methyl-tert-butylether	ND	ND	ND	ND	ND	5.0	μg/kg
Ethyl-tert-butylether	ND	ND	ND	ND	ND	5.0	μg/kg
Di-isopropylether	ND	ND	ND	ND	ND	5.0	μg/kg
ert-amylmethylether	ND	ND	ND	ND	ND	5.0	μg/kg
tert-Butylalcohol	ND	ND	ND	ND	ND	50.0	μg/kg
ent-Dutylateonol	ND	ND	ND	ND	ΠD	50.0	μg/ κg
Dilution Factor	1	1	1	1	1		
Surrogate Recoveries:						<u>QC Limit</u>	
Dibromofluoromethane	96%	98%	98%	99%	101%	60 - 140	
Toluene-d ₈	93%	94%	95%	93%	93%	60 - 140	
4-Bromofluorobenzene	98%	96%	99%	97%	99%	60 - 140	
Batch:	VOC6-032822- 01	VOC6-032822- 01	VOC6-032822- 01	VOC6-032822- 01	VOC6-032822- 01		

ND = Value less than reporting limit

11007 FOREST PLACE Santa Fe Springs, ca 9067(WWW.Jonesenv.com

JONES ENVIRONMENTAL LABORATORY RESULTS

Client: Client Address:	Conservation Consulting International 23862 Hawthorne Blvd. Torrance, CA 90505	Report date: Jones Ref. No.: Client Ref. No.:	3/30/2022 ST-19418 2503-1
Attn:	Ken Durand	Date Sampled:	3/25/2022
Project:	Cerritos	Date Received: Date Analyzed: Physical State:	3/25/2022 3/28/2022 Soil

Sample ID:	SV2-5	SV4-5	SV4-10	SV5-5	SV5-10		
Jones ID:	ST-19418-07	ST-19418-09	ST-19418-10	ST-19418-12	ST-19418-13	<u>Reporting Limit</u>	<u>Units</u>
Analytes:							
Benzene	ND	ND	ND	1.9	1.1	1.0	µg/kg
Bromobenzene	ND	ND	ND	ND	ND	1.0	µg/kg
Bromodichloromethane	ND	ND	ND	ND	ND	1.0	μg/kg
Bromoform	ND	ND	ND	ND	ND	1.0	µg/kg
n-Butylbenzene	ND	ND	ND	ND	ND	1.0	μg/kg
sec-Butylbenzene	ND	ND	ND	ND	ND	1.0	μg/kg
tert-Butylbenzene	ND	ND	ND	ND	ND	1.0	µg/kg
Carbon tetrachloride	ND	ND	ND	ND	ND	1.0	μg/kg
Chlorobenzene	ND	ND	ND	ND	ND	1.0	μg/kg
Chloroform	ND	ND	ND	ND	ND	1.0	µg/kg
2-Chlorotoluene	ND	ND	ND	ND	ND	1.0	μg/kg
4-Chlorotoluene	ND	ND	ND	ND	ND	1.0	μg/kg
Dibromochloromethane	ND	ND	ND	ND	ND	1.0	µg/kg
1,2-Dibromo-3-chloropropane	ND	ND	ND	ND	ND	1.0	μg/kg
1,2-Dibromoethane (EDB)	ND	ND	ND	ND	ND	1.0	µg/kg
Dibromomethane	ND	ND	ND	ND	ND	1.0	μg/kg
1,2- Dichlorobenzene	ND	ND	ND	ND	ND	1.0	μg/kg
1,3-Dichlorobenzene	ND	ND	ND	ND	ND	1.0	µg/kg
1,4-Dichlorobenzene	ND	ND	ND	ND	ND	1.0	μg/kg
1,1-Dichloroethane	ND	ND	ND	ND	ND	1.0	μg/kg
1,2-Dichloroethane	ND	ND	ND	ND	ND	1.0	µg/kg
1,1-Dichloroethene	ND	ND	ND	ND	ND	1.0	μg/kg
cis-1,2-Dichloroethene	ND	ND	ND	ND	ND	1.0	µg/kg
rans-1,2-Dichloroethene	ND	ND	ND	ND	ND	1.0	μg/kg
1,2-Dichloropropane	ND	ND	ND	ND	ND	1.0	μg/kg
1,3-Dichloropropane	ND	ND	ND	ND	ND	1.0	μg/kg
2,2-Dichloropropane	ND	ND	ND	ND	ND	1.0	μg/kg
1,1-Dichloropropene	ND	ND	ND	ND	ND	1.0	μg/kg
cis-1,3-Dichloropropene	ND	ND	ND	ND	ND	1.0	μg/kg

Sample ID:	SV2-5	SV4-5	SV4-10	SV5-5	SV5-10		
Jones ID:	ST-19418-07	ST-19418-09	ST-19418-10	ST-19418-12	ST-19418-13	Reporting Limit	<u>Units</u>
Analytes:							
trans-1,3-Dichloropropene	ND	ND	ND	ND	ND	1.0	µg/kg
Ethylbenzene	ND	ND	ND	ND	ND	1.0	μg/kg
Freon 11	ND	ND	ND	ND	ND	5.0	µg/kg
Freon 12	ND	ND	ND	ND	ND	5.0	µg/kg
Freon 113	ND	ND	ND	ND	ND	5.0	µg/kg
Hexachlorobutadiene	ND	ND	ND	ND	ND	1.0	µg/kg
sopropylbenzene	ND	ND	ND	ND	ND	1.0	μg/kg
4-Isopropyltoluene	ND	ND	ND	ND	ND	1.0	μg/kg
Methylene chloride	ND	ND	ND	ND	ND	1.0	μg/kg
Naphthalene	ND	ND	ND	ND	ND	1.0	μg/kg
n-Propylbenzene	ND	ND	ND	ND	ND	1.0	μg/kg
Styrene	ND	ND	ND	ND	ND	1.0	μg/kg
1,1,1,2-Tetrachloroethane	ND	ND	ND	ND	ND	1.0	μg/kg
1,1,2,2-Tetrachloroethane	ND	ND	ND	ND	ND	1.0	μg/kg
Fetrachloroethene	ND	ND	ND	ND	ND	1.0	μg/kg
Foluene	ND	ND	ND	ND	ND	1.0	μg/kg
,2,3-Trichlorobenzene	ND	ND	ND	ND	ND	1.0	μg/kg
,2,4-Trichlorobenzene	ND	ND	ND	ND	ND	1.0	μg/kg
,1,1-Trichloroethane	ND	ND	ND	ND	ND	1.0	µg/kg
1,1,2-Trichloroethane	ND	ND	ND	ND	ND	1.0	μg/kg
Frichloroethene	ND	ND	ND	ND	ND	1.0	μg/kg
1,2,3-Trichloropropane	ND	ND	ND	ND	ND	1.0	µg/kg
1,2,4-Trimethylbenzene	ND	ND	ND	ND	ND	1.0	μg/kg
1,3,5-Trimethylbenzene	ND	ND	ND	ND	ND	1.0	µg/kg
Vinyl chloride	ND	ND	ND	ND	ND	1.0	μg/kg
n,p-Xylene	ND	ND	ND	ND	ND	2.0	μg/kg
p-Xylene	ND	ND	ND	ND	ND	1.0	μg/kg
Methyl-tert-butylether	ND	ND	ND	ND	ND	5.0	μg/kg
Ethyl-tert-butylether	ND	ND	ND	ND	ND	5.0	μg/kg
Di-isopropylether	ND	ND	ND	ND	ND	5.0	μg/kg
ert-amylmethylether	ND	ND	ND	ND	ND	5.0	μg/kg
ert-Butylalcohol	ND	ND	ND	ND	ND	50.0	μg/kg
	ND	ND	ND	ND	ND	50.0	μg/kg
Dilution Factor	1	1	1	1	1		
Surrogate Recoveries:						<u>QC Limit</u>	_
Dibromofluoromethane	101%	102%	104%	105%	103%	60 - 140	
Foluene-d ₈	95%	92%	92%	90%	93%	60 - 140	
4-Bromofluorobenzene	98%	96%	98%	100%	96%	60 - 140	
Batch:	VOC6-032822- 01	VOC6-032822- 01	VOC6-032822- 01	VOC6-032822- 01	VOC6-032822- 01		

ND = Value less than reporting limit

Client:	Conservation Consulting International	Report date:	3/30/2022
Client Address:	23862 Hawthorne Blvd.	Jones Ref. No.:	ST-19418
	Torrance, CA 90505	Client Ref. No.:	2503-1
Attn:	Ken Durand	Date Sampled:	3/25/2022
		Date Received:	3/25/2022
Project:	Cerritos	Date Analyzed:	3/28/2022
		Physical State:	Soil

	EPA 8260B by 5035 - Volatile Organ	ics by GC/MS + Oxygenates	
Sample ID:	METHOD		
	BLANK #1		
Jones ID:	032822-		T T •4
Analytes:	V6MB1	<u>Reporting Limit</u>	<u>Units</u>
Benzene	ND	1.0	µg/kg
Bromobenzene	ND	1.0	μg/kg μg/kg
Bromodichloromethane	ND	1.0	μg/kg μg/kg
Bromoform	ND	1.0	μg/kg μg/kg
n-Butylbenzene	ND	1.0	μg/kg μg/kg
sec-Butylbenzene	ND ND	1.0	μg/kg μg/kg
tert-Butylbenzene	ND ND	1.0	μg/kg μg/kg
Carbon tetrachloride	ND ND	1.0	μg/kg μg/kg
Chlorobenzene	ND	1.0	μg/kg μg/kg
Chloroform	ND	1.0	μg/kg μg/kg
2-Chlorotoluene	ND	1.0	μg/kg μg/kg
4-Chlorotoluene	ND	1.0	μg/kg μg/kg
Dibromochloromethane	ND	1.0	μg/kg
1,2-Dibromo-3-chloropropane	ND	1.0	μg/kg
1,2-Dibromoethane (EDB)	ND	1.0	μg/kg
Dibromomethane	ND	1.0	μg/kg
1,2- Dichlorobenzene	ND	1.0	μg/kg
1,3-Dichlorobenzene	ND	1.0	μg/kg
1,4-Dichlorobenzene	ND	1.0	μg/kg
1,1-Dichloroethane	ND	1.0	μg/kg
1,2-Dichloroethane	ND	1.0	μg/kg
1,1-Dichloroethene	ND	1.0	μg/kg
cis-1,2-Dichloroethene	ND	1.0	μg/kg
trans-1,2-Dichloroethene	ND	1.0	μg/kg
1,2-Dichloropropane	ND	1.0	μg/kg
1,3-Dichloropropane	ND	1.0	μg/kg
2,2-Dichloropropane	ND	1.0	μg/kg
1,1-Dichloropropene	ND	1.0	μg/kg
cis-1,3-Dichloropropene	ND	1.0	μg/kg

	EPA 8260B by 5035 – Volatile Organ	ics by GC/MS + Oxygenates	
Sample ID:	METHOD BLANK #1		
Jones ID:	032822- V6MB1	Reporting Limit	<u>Units</u>
Analytes:			
trans-1,3-Dichloropropene	ND	1.0	µg/kg
Ethylbenzene	ND	1.0	μg/kg
Freon 11	ND	5.0	μg/kg
Freon 12	ND	5.0	μg/kg
Freon 113	ND	5.0	µg/kg
Hexachlorobutadiene	ND	1.0	μg/kg
lsopropylbenzene	ND	1.0	μg/kg
4-Isopropyltoluene	ND	1.0	μg/kg
Methylene chloride	ND	1.0	μg/kg
Naphthalene	ND	1.0	μg/kg
n-Propylbenzene	ND	1.0	μg/kg
Styrene	ND	1.0	µg/kg
1,1,1,2-Tetrachloroethane	ND	1.0	µg/kg
1,1,2,2-Tetrachloroethane	ND	1.0	µg/kg
Fetrachloroethene	ND	1.0	µg/kg
Foluene	ND	1.0	μg/kg
1,2,3-Trichlorobenzene	ND	1.0	µg/kg
1,2,4-Trichlorobenzene	ND	1.0	μg/kg
1,1,1-Trichloroethane	ND	1.0	μg/kg
1,1,2-Trichloroethane	ND	1.0	μg/kg
Frichloroethene	ND	1.0	μg/kg
1,2,3-Trichloropropane	ND	1.0	μg/kg
1,2,4-Trimethylbenzene	ND	1.0	μg/kg
1,3,5-Trimethylbenzene	ND	1.0	μg/kg
Vinyl chloride	ND	1.0	μg/kg μg/kg
m,p-Xylene	ND	2.0	μg/kg μg/kg
p-Xylene	ND	1.0	μg/kg μg/kg
Methyl-tert-butylether	ND ND	5.0	
	ND ND	5.0	µg/kg
Ethyl-tert-butylether	ND ND		µg/kg
Di-isopropylether ert-amylmethylether		5.0	µg/kg
	ND	5.0	µg/kg
ert-Butylalcohol	ND	50.0	µg/kg
Dilution Factor	1		
Surrogate Recoveries:		<u>QC Limi</u>	_
Dibromofluoromethane	90%	60 - 140	
Foluene-d ₈	103%	60 - 140	
4-Bromofluorobenzene	81%	60 - 140	
Batch:	VOC6-032822- 01		

ND = Value less than reporting limit

JONES ENVIRONMENTAL QUALITY CONTROL INFORMATION

Client:	Conservation Consulting International	Report date:	3/30/2022
Client Address:	23862 Hawthorne Blvd.	Jones Ref. No.:	ST-19418
	Torrance, CA 90505	Client Ref. No.:	2503-1
Attn:	Ken Durand	Date Sampled:	3/25/2022
		Date Received:	3/25/2022
Project:	Cerritos	Date Analyzed:	3/28/2022
		Physical State:	Soil

EPA 8260B by 5035 - Volatile Organics by GC/MS + Oxygenates

GC#:	VO	C6-032822-01				
Jones ID:	032822-V6LCS1	032822-V6LCSD1			032822-V6CCV1	
	LCS	LCSD		Acceptability		Acceptability
Parameter	Recovery (%)	Recovery (%)	<u>RPD</u>	Range (%)	<u>CCV</u>	Range (%)
Vinyl chloride	66%	60%	9.5%	60 - 140	85%	80 - 120
1,1-Dichloroethene	108%	103%	5.0%	60 - 140	113%	80 - 120
Cis-1,2-Dichloroethene	101%	95%	5.8%	70 - 130	105%	80 - 120
1,1,1-Trichloroethane	88%	78%	12.9%	70 - 130	103%	80 - 120
Benzene	100%	98%	2.2%	70 - 130	105%	80 - 120
Trichloroethene	104%	98%	5.3%	70 - 130	107%	80 - 120
Toluene	103%	101%	2.3%	70 - 130	110%	80 - 120
Tetrachloroethene	102%	98%	4.4%	70 - 130	103%	80 - 120
Chlorobenzene	105%	103%	2.0%	70 - 130	103%	80 - 120
Ethylbenzene	105%	101%	4.6%	70 - 130	104%	80 - 120
1,2,4 Trimethylbenzene	94%	92%	1.9%	70 - 130	68% ¹	80 - 120
Surrogate Recovery:						
Dibromofluoromethane	103%	98%		60 - 140	108%	60 - 140
Toluene-d ₈	92%	92%		60 - 140	92%	60 - 140
4-Bromofluorobenzene	100%	101%		60 - 140	116%	60 - 140

¹=Recovery outside of acceptable limits. LCS/LCSD recoveries and %RPD were within QC limits, therefore data was accepted.

LCS = Laboratory Control Sample

LCSD = Laboratory Control Sample Duplicate

CCV = Continuing Calibration Verification

RPD = Relative Percent Difference; Acceptability range for RPD is $\leq 20\%$

Sant Client Ci				Date <u>3/25/22</u> Client Project # <u>2</u> 503-1		Turn Around Requested Immediate Attention Rush 24 Hours Rush 48 Hours Rush 72 Hours Mormal			:	EDD	10% Suro			_	3	Jones Project # ST-19418 Page			
Project Address				Sam	ple Container I Pr Abbreviation					Analys	is Rec	queste	d .				1	of	2
					cetate Sleeve		Product (FP										Sam	ple Condition as Re	ceived
Email			8.9		tainless Steel Slee rass Sleeve ass Jar	eve	Free Pro											ed ⊡yes ⊡no ed ⊡yes ⊡no	
Phone				AB - A P - Pla	mber Bottle stic														
Report To	Sampler	3 -2		MeOH	- Sodium Bisulfate - Methanol Hydrochloric Acid		c: -), Aqueous (A),	2								Containers			
					- Nitric Acid her (See Notes)		Matrix: udge (SL),	2								of Con			
Sample ID	Date	Sample Collection Time	Jones ID Lab Use Onl	y	Preservative	Sample Container	nple (S), SI								DIOH	Number	Notes	s & Special Instruc	tions
503-2	3/25/22	855	ST-19418-	01			4	8										9	
513-5		900	ST-19418-					Y											
SV1-2		910	ST-19418													-			
501-5		915	97-19418					×				-					1 8		
SU1-10		920	ST-19418					×											
502-2		930	9T-19418					×											
502-5		538	97-19418					Y							+				
504-2		950	97-19418												+				
SUY - 5		952	57-16416	-09				×						-	1				
SU4-10		955	ST-19416-	10				×							+			<u></u>	
elinquished By (Signature)	/	Printed	Name DU/	N	Received By (Si	ignature)			;	Printed N	lame	N	eder		+	Tota	Number	of Containers	
ompany CES		Date	Time 172 121	0	Company	5)			Date		Tim	e						
		1				EN				SP	SNZ)	210			Client sig	gnature on	this Chain of Custod	
elinquished By (Signature)		Printed	Name No.7		Received By La	boratory (Sig	nature)	/		Printed N Sy d		1						wledgment that the a equested, and the inf	

JONNES Sa CCT Sa Sa Sa Sa Sa Sa Sa Sa Sa Sa			чC.	Date				mmed	ound R iate Atter 4 Hours		ed:	EDD	Report O) ^{:*} - 10% S	 10			LAB USE ONLY Jones Project #
oject Name Cannillan				Client I	Project #	1 6 0		Rush 4	8 Hours 2 Hours				bal ID	Je		ST	<u>FIG418</u>
oject Address		a 8- :		Sam	ple Container I Pr Abbreviation		- 5	4 I		Ana	ysis F	Reques	sted			1 de	2 of Z
-1			19-19-		AS cetate Sleeve tainless Steel Slee	21/0	oduct (FP					9					ple Condition as Recei
ail	8			BS - B G - Gla	rass Sleeve), Free Pro										ed □yes □no ed □yes □no
port To	Complex			P - Pla SOBI -	stic Sodium Bisulfate		ueous (A),								SIS	L	
	Sampler	Ka.	RAND	HCI - F HNO3	- Methanol Hydrochloric Acid - Nitric Acid ner (See Notes)		atrix: Je (SL), Aq	200							Containers		
Sample ID	Date	Sample Collection Time	Jones ID Lab Use Onl		Preservative	Sample Container	Sample Matrix: Soil (S), Sludge (SL),	0						Pold	Number of (Notes	s & Special Instructio
505-2	3/2/1/20	1000	ST-19418-	-11	19.9.1		0,0								z		
505-5		1005	ST-19418					×									
505-10	X	1010	9T-19418					8									
											-						
						190					-						
																	2
iquished By (Signature)		Printed	Name SN Peril	/	Received By (Si	gnature)					d Name	h	1.7/				
1		1-0	~~~~		Company	\sim				Jet	lar	11	RACI			otal Number o	of Containers

714-449-9937 562-646-1611

11007 FOREST PLACE SANTA FE SPRINGS, CA 90670 WWW.JONESENV.COM

SAMPLE RI	ECEIPT FORM	Jones ID:	57-19418
CLIENT: CLI PROJECT: Cervitos	DATE/TIME (LAB RECEIVE RECEIVE		
Delivered by: Client Jones Courier	□UPS / FedEx / USPS	AOther Jo	nchson
TEMPERATURE: Thermometer ID: T-1	(Corrected Temp.)	Calibration D	ue: 08/03/2022
Temperature Cooler #1 <u>b</u> . 5° C ± the CF(-0.	5°C) <u>6</u> .0°C	Blank	Sample
Temperature Cooler #2 °C ± the CF(-0.	5°C)°C	Blank	Sample
Temperature Criteria: $0 \le 6^{\circ}$ C (NO frozen containers)	Criteria Met? 👌 Y	es 🗆 No	
If anitomic is not most.			
If criteria is not met: Sample Received on ice?	Yes	No*	
Sample received Chilled on same day of sampli		No*	
SAMPLER		Checked By:	
SAMPLE CONDITION:	nane or i en l	YES	NO* N/A
Chain of Custody (COC) received filled out completely		- 🖉	□* □
Total number of containers received match COC	Chi 25 / Par by Li	ø	□* □
Sample container label(s) consistent with COC		ø	•
Sample container(s) intact and in good condition		· 🖓	□* □
Proper containers and sufficient volume for analyses req	uested on COC	· ø	□* □
Proper preservative indicated on COC/container for anal	yses requested	- ,ź	•
Volatile analysis container(s) free of headspace (EPA 8260 w	vater)	- 🗆	□* Ø
Custody Seals Intact on Cooler/Sample		Ø	□* □
CONTAINER TYPE:		(),=	
Solid: Aqueous:		/ Soil Gas:	
Solid. Aqueous: 5035 Kits: 13x3 Amber Bo Glass Jar: VOAs:		Tedlar Bag:	set s
	e:	6 hr	
		72 hr 5 5ay	
Other:		Summa:	
Sample Contains a logistic of the second of the second		(1L)	(6L)
na anna an tarraigh ann an tarr			
MILEAGE:	Time: 30 min	0	e: 1Hr
Round Trip Mileage: 10 Trave	Time: 30min	On Site Tim	e:

*Complete Non-Conformance if checked

NA Checked by:

11007 FOREST PLACE Santa Fe Springs, ca 90670 WWW.JONESENV.COM

JONES ENVIRONMENTAL LABORATORY RESULTS

Client: Client Address:	Conservation Consulting International 23862 Hawthorne Blvd. Torrance, CA 90505	Report date: Jones Ref. No.: Client Ref. No.:	3/29/2022 ST-19417 2503-1
Attn:	Ken Durand	Date Sampled:	3/25/2022
		Date Received:	3/25/2022
Project:		Date Analyzed:	3/25/2022
Project Address:	13321 Artesia Blvd	Physical State:	Soil Gas
	Cerritos, CA 90703		
	FPA 8260B Volatile Organics by CC/MS +	Oxygonatos	

EPA 8260B – Volatile Organics by GC/MS + Oxygenates

ANALYSES REQUESTED

1. EPA 8260B - Volatile Organics by GC/MS + Oxygenates

Approval:

Douglas A. Fowler, B.S. Stationary Lab Chemist

Client: Client Address:	Conservation 23862 Hawth Torrance, CA	orne Blvd.	nternational		Report date: Jones Ref. No.: Client Ref. No.:	3/29/2022 ST-19417 2503-1	
Attn:	Ken Durand					Date Sampled: Date Received:	3/25/2022 3/25/2022
Project:						Date Analyzed:	3/25/2022
Project Address:	13321 Artesia					Physical State:	Soil Gas
	Cerritos, CA						
	EPA 82	60B – Volati	le Organics b	oy GC/MS +	Oxygenates		
<u>Sample ID:</u>	SV1-5'	SV2-5'	SV3-5'	SV4-5'	SV5-5'		
Jones ID:	ST-19417-01	ST-19417-02	ST-19417-03	ST-19417-04	ST-19417-05	<u>Reporting Limit</u>	<u>Units</u>
Analytes:						0	()
Benzene Bromobenzene	ND	ND	ND	ND	ND	8	μg/m3
Bromodichloromethane	ND ND	ND ND	ND ND	ND ND	ND ND	8 8	μg/m3 μg/m3
Bromoform	ND	ND	ND	ND	ND	8	μg/m3
n-Butylbenzene	ND	ND	ND	ND	ND	12	μg/m3
sec-Butylbenzene	ND	ND	ND	ND	ND	12	μg/m3
tert-Butylbenzene	ND	ND	ND	ND	ND	12	µg/m3
Carbon tetrachloride	ND	ND	ND	ND	ND	8	µg/m3
Chlorobenzene	ND	ND	ND	ND	ND	8	µg/m3
Chloroform	19	19	12	97	76	8	µg/m3
2-Chlorotoluene	ND	ND	ND	ND	ND	12	$\mu g/m3$
4-Chlorotoluene Dibromochloromethane	ND ND	ND ND	ND ND	ND ND	ND ND	12 8	μg/m3 μg/m3
1,2-Dibromo-3-chloropropane	ND	ND	ND	ND	ND	8	μg/m3
1,2-Dibromoethane (EDB)	ND	ND	ND	ND	ND	8	μg/m3
Dibromomethane	ND	ND	ND	ND	ND	8	μg/m3
1,2- Dichlorobenzene	ND	ND	ND	ND	ND	16	μg/m3
1,3-Dichlorobenzene	ND	ND	ND	ND	ND	16	µg/m3
1,4-Dichlorobenzene	ND	ND	ND	ND	ND	16	µg/m3
Dichlorodifluoromethane	33	39	55	ND	39	16	µg/m3
1,1-Dichloroethane	ND	ND	ND	ND	ND	8	µg/m3
1,2-Dichloroethane	ND	ND	ND	ND	ND	8	$\mu g/m3$
1,1-Dichloroethene cis-1,2-Dichloroethene	ND ND	ND ND	ND ND	ND ND	ND ND	8 8	μg/m3 μg/m3
trans-1,2-Dichloroethene	ND	ND	ND	ND	ND	8	μg/m3
1,2-Dichloropropane	ND	ND	ND	ND	ND	8	μg/m3
1,3-Dichloropropane	ND	ND	ND	ND	ND	8	μg/m3
2,2-Dichloropropane	ND	ND	ND	ND	ND	16	μg/m3
1,1-Dichloropropene	ND	ND	ND	ND	ND	10	µg/m3

EPA 8260B – Volatile Organics by GC/MS + Oxygenates

Sample ID:	SV1-5'	SV2-5'	SV3-5'	SV4-5'	SV5-5'		
Jones ID:	ST-19417-01	ST-19417-02	ST-19417-03	ST-19417-04	ST-19417-05	<u>Reporting Limit</u>	<u>Units</u>
Analytes:							
cis-1,3-Dichloropropene	ND	ND	ND	ND	ND	8	µg/m3
trans-1,3-Dichloropropene	ND	ND	ND	ND	ND	8	µg/m3
Ethylbenzene	ND	ND	ND	ND	ND	8	µg/m3
Freon 113	ND	ND	ND	ND	ND	16	µg/m3
Hexachlorobutadiene	ND	ND	ND	ND	ND	24	µg/m3
Isopropylbenzene	ND	ND	ND	ND	ND	8	µg/m3
4-Isopropyltoluene	ND	ND	ND	ND	ND	8	µg/m3
Methylene chloride	ND	ND	ND	ND	ND	8	µg/m3
Naphthalene	ND	ND	ND	ND	ND	40	µg/m3
n-Propylbenzene	ND	ND	ND	ND	ND	8	µg/m3
Styrene	ND	ND	ND	ND	ND	8	µg/m3
1,1,1,2-Tetrachloroethane	ND	ND	ND	ND	ND	8	µg/m3
1,1,2,2-Tetrachloroethane	ND	ND	ND	ND	ND	16	µg/m3
Tetrachloroethene	123	58	394	170	14	8	µg/m3
Toluene	14	10	ND	16	ND	8	µg/m3
1,2,3-Trichlorobenzene	ND	ND	ND	ND	ND	16	µg/m3
1,2,4-Trichlorobenzene	ND	ND	ND	ND	ND	16	µg/m3
1,1,1-Trichloroethane	ND	ND	ND	ND	ND	8	µg/m3
1,1,2-Trichloroethane	ND	ND	ND	ND	ND	8	µg/m3
Trichloroethene	ND	ND	ND	ND	ND	8	µg/m3
Trichlorofluoromethane	ND	ND	16	32	41	16	µg/m3
1,2,3-Trichloropropane	ND	ND	ND	ND	ND	8	µg/m3
1,2,4-Trimethylbenzene	ND	ND	ND	ND	ND	8	µg/m3
1,3,5-Trimethylbenzene	ND	ND	ND	ND	ND	8	µg/m3
Vinyl chloride	ND	ND	ND	ND	ND	8	µg/m3
m,p-Xylene	ND	ND	ND	ND	ND	16	µg/m3
o-Xylene	ND	ND	ND	ND	ND	8	µg/m3
MTBE	ND	ND	ND	ND	ND	40	µg/m3
Ethyl-tert-butylether	ND	ND	ND	ND	ND	40	µg/m3
Di-isopropylether	ND	ND	ND	ND	ND	40	µg/m3
tert-amylmethylether	ND	ND	ND	ND	ND	40	µg/m3
tert-Butylalcohol	ND	ND	ND	ND	ND	400	µg/m3
Tracer:							
n-Pentane	ND	ND	ND	ND	ND	80	µg/m3
n-Hexane	ND	ND	ND	ND	ND	80	μg/m3
n-Heptane	ND	ND	ND	ND	ND	80	µg/m3
Dilution Factor	1	1	1	1	1		
Surrogate Recoveries:						<u>QC Limi</u>	ts
Dibromofluoromethane	97%	96%	96%	95%	93%	60 - 140	
Toluene-d ₈	102%	102%	100%	100%	101%	60 - 140	1
4-Bromofluorobenzene	102%	101%	100%	100%	101%	60 - 140)
	D3-032522-	D3-032522-	D3-032522-	D3-032522-	D3-032522-		
<u>Batch ID:</u>	01	01	01	01	01		

ND = Value below reporting limit

JONES ENVIRONMENTAL QUALITY CONTROL INFORMATION

Client: Client Address:	Conservation 23862 Hawt Torrance, Ca		1 I	Report date: Jones Ref. No.: Client Ref. No.:	3/29/2022 ST-19417 2503-1
Attn:	Ken Durand			Date Sampled: Date Received:	3/25/2022 3/25/2022
Project:				Date Analyzed:	3/25/2022
Project Address:	13321 Artes	ia Blvd		Physical State:	Soil Gas
	Cerritos, CA	. 90703			
	EPA 82	260B – Volatile Organic	es by GC/MS + Oxygenates		
Sample ID:	METHOD BLANK	SAMPLING BLANK			
Jones ID:	032522- D3MB1	032522- D3SB1		Reporting Limit	<u>Units</u>
Analytes:					
Benzene	ND	ND		8	µg/m3
Bromobenzene	ND	ND		8	μg/m3
Bromodichloromethane Bromoform	ND ND	ND ND		8 8	μg/m3 μg/m3
n-Butylbenzene	ND	ND		8 12	μg/m3
sec-Butylbenzene	ND	ND		12	μg/m3
tert-Butylbenzene	ND	ND		12	μg/m3
Carbon tetrachloride	ND	ND		8	μg/m3
Chlorobenzene	ND	ND		8	μg/m3
Chloroform	ND	ND		8	µg/m3
2-Chlorotoluene	ND	ND		12	µg/m3
4-Chlorotoluene	ND	ND		12	µg/m3
Dibromochloromethane	ND	ND		8	µg/m3
1,2-Dibromo-3-chloropropane	ND	ND		8	µg/m3
1,2-Dibromoethane (EDB)	ND ND	ND		8	μg/m3
Dibromomethane 1,2- Dichlorobenzene	ND ND	ND ND		8 16	μg/m3 μg/m3
1,3-Dichlorobenzene	ND	ND		16	μg/m3
1,4-Dichlorobenzene	ND	ND		16	μg/m3
Dichlorodifluoromethane	ND	ND		16	μg/m3
1,1-Dichloroethane	ND	ND		8	μg/m3
1,2-Dichloroethane	ND	ND		8	µg/m3
1,1-Dichloroethene	ND	ND		8	µg/m3
cis-1,2-Dichloroethene	ND	ND		8	µg/m3
trans-1,2-Dichloroethene	ND	ND		8	µg/m3
1,2-Dichloropropane	ND	ND		8	µg/m3
1,3-Dichloropropane	ND	ND		8	µg/m3
2,2-Dichloropropane	ND	ND		16	μg/m3
1,1-Dichloropropene	ND	ND		10	µg/m3

EPA 8260B - Volatile Organics by GC/MS + Oxygenates METHOD SAMPLING Sample ID: **BLANK BLANK** 032522-032522-Jones ID: D3MB1 **Reporting Limit** D3SB1 Units Analytes: ND ND 8 cis-1,3-Dichloropropene $\mu g/m3$ 8 trans-1,3-Dichloropropene ND ND $\mu g/m3$ µg/m3 Ethylbenzene ND ND 8 Freon 113 ND ND 16 µg/m3 Hexachlorobutadiene ND ND 24 µg/m3 Isopropylbenzene ND ND 8 $\mu g/m3$ 4-Isopropyltoluene ND ND 8 $\mu g/m3$ Methylene chloride 8 ND ND $\mu g/m3$ Naphthalene ND ND 40 µg/m3 8 n-Propylbenzene ND ND µg/m3 Styrene ND ND 8 µg/m3 ND ND 8 1,1,1,2-Tetrachloroethane $\mu g/m3$ 1,1,2,2-Tetrachloroethane ND ND 16 $\mu g/m3$ Tetrachloroethene ND ND 8 $\mu g/m3$ 8 $\mu g/m3$ ND ND Toluene 1.2.3-Trichlorobenzene ND ND 16 µg/m3 1,2,4-Trichlorobenzene ND ND 16 $\mu g/m3$ ND ND 1,1,1-Trichloroethane 8 µg/m3 1,1,2-Trichloroethane ND ND 8 µg/m3 Trichloroethene ND ND 8 $\mu g/m3$ Trichlorofluoromethane ND 16 ND $\mu g/m3$ 1.2.3-Trichloropropane ND ND 8 µg/m3 1,2,4-Trimethylbenzene ND ND 8 µg/m3 1,3,5-Trimethylbenzene 8 ND ND $\mu g/m3$ Vinyl chloride ND ND 8 µg/m3 m,p-Xylene 16 ND ND $\mu g/m3$ o-Xylene ND ND 8 $\mu g/m3$ MTBE ND ND 40 $\mu g/m3$ Ethyl-tert-butylether ND ND 40 µg/m3 **Di-isopropylether** 40 ND ND $\mu g/m3$ tert-amylmethylether ND ND 40 µg/m3 tert-Butylalcohol ND ND µg/m3 400 **Tracer:** n-Pentane ND ND 80 $\mu g/m3$ ND ND 80 µg/m3 n-Hexane n-Heptane ND ND 80 µg/m3 **Dilution Factor** 1 1 **Surrogate Recoveries: OC** Limits 99% 99% 60 - 140 Dibromofluoromethane 100% 100% 60 - 140 Toluene-d₈ 60 - 140 4-Bromofluorobenzene 101% 100% D3-032522- D3-032522-**Batch ID:**

ND = Value below reporting limit

01

01

11007 FOREST PLACE Santa Fe Springs, ca 9067(WWW.Jonesenv.com

JONES ENVIRONMENTAL QUALITY CONTROL INFORMATION

Client: Client Address:	Conservation Consulting International 23862 Hawthorne Blvd. Torrance, CA 90505	Report date: 3/29/2022 Jones Ref. No.: ST-19417 Client Ref. No.: 2503-1
Attn:	Ken Durand	Date Sampled: 3/25/2022 Date Received: 3/25/2022
Project: Project Address:	13321 Artesia Blvd Cerritos, CA 90703	Date Analyzed: 3/25/2022 Physical State: Soil Gas

EPA 8260B - Volatile Organics by GC/MS + Oxygenates

Batch ID:	D3-032522-01					
Jones ID:	032522-D3LCS1	032522-D3LCSD1		03	32522-D3CC	V1
	LCS	LCSD	LCSD			Acceptability
Parameter	Recovery (%)	Recovery (%)	<u>RPD</u>	Range (%)	<u>CCV</u>	Range (%)
Vinyl chloride	133%	135%	2.1%	60 - 140	118%	80 - 120
1,1-Dichloroethene	113%	109%	3.3%	60 - 140	99%	80 - 120
Cis-1,2-Dichloroethene	101%	95%	5.9%	70 - 130	98%	80 - 120
1,1,1-Trichloroethane	102%	98%	3.6%	70 - 130	98%	80 - 120
Benzene	101%	97%	4.0%	70 - 130	97%	80 - 120
Trichloroethene	105%	99%	5.5%	70 - 130	101%	80 - 120
Toluene	100%	97%	2.9%	70 - 130	97%	80 - 120
Tetrachloroethene	100%	97%	2.6%	70 - 130	96%	80 - 120
Chlorobenzene	99%	96%	3.1%	70 - 130	98%	80 - 120
Ethylbenzene	99%	95%	4.3%	70 - 130	100%	80 - 120
1,2,4 Trimethylbenzene	104%	101%	3.4%	70 - 130	112%	80 - 120
Gasoline Range Organics (C4-C12)	101%	97%	3.7%	70 - 130	102%	80 - 120
Surrogate Recovery:						
Dibromofluoromethane	100%	101%		60 - 140	99%	60 - 140
Toluene-d ₈	99%	98%		60 - 140	97%	60 - 140
4-Bromofluorobenzene	104%	103%		60 - 140	106%	60 - 140

LCS = Laboratory Control Sample

LCSD = Laboratory Control Sample Duplicate

CCV = Continuing Calibration Verification

RPD = Relative Percent Difference; Acceptability range for RPD is $\leq 20\%$

		JE	ES	San	11007 Forest P ta Fe Springs, CA 90670 (714) 449-993 reports@jonesenv.con www.jonesenv.con	D 7 1	ç	Soil-G	Ba	s (Cł	nai	n-	0	f-(Cust	ody	Red	cord
CCI					Date 3/25/22		Tedlar⊢ Ja _e 6hr(D	lold-Time Re	ques	ted:		EDD	eport			1	LAB USE		
Client Address				Client Project # 2503-1		□ 72 hr (EPA) □ 5 Day					EDF*				ge	Jones Project #			
					Turn Around R	equested	т	racer		Δn	alvei	e Ro	ano	sto	ч				
	rtesi	a B	Vd		□ Immediate Atter □ Rush 24 Hours-	100%	≱ n-pentane ≽ n-hexane					s Reques					Page 1	of	1
Cerritos, CA 9	0703	>			□ Rush 72 Hours-	Rush 72 Hours-50%		∦ n-heptane □ Helium				d Gas/					Sample Co	ontainer:	1
Report To	port To			□ Rush 96 Hours-)¢ Normal - No Su	□ 1,1-DFA				lics	e/Fixeo	(0°H/u						0		
Email/Phone		Sampler				Domuostad			Materia		Orgar	ethane		num (lr	iners		If different th	an above, see No	otes.
	Phone Sampler Jackson Nertor				Reporting Limits Requested □ 20 ug/m ³ 北 8 ug/m ³		Units ⊸∉ug/m³ □ ug/L □ ppmV				Range	946, M		c Vacu	Containers				
	Purge lumber	Purge Volume (mL)	Date	Sample Collection Time	□ ug/m Jones ID (Lab Use Only)	Purge Rate (mL/min)	Pump ID	Magnehelic ID	Soil Gas (SG). Air	8260B	Gasoline Range Organics	ASTM D1946, Methane/Fixed Gas/H ₂ S		Magnehelic Vacuum (In/H ₂ O)	Number of	Note	es & Speci	al Instruct	ions
SV1-5' 3	3	1610	3/25	1230	97-19417-01	200	Casey,	M100.201	56	X	0	A		5 42	ž				
5/2-5	3	1610	3/25	1233		200	Jadaonz		SG					~2					
523-51	3	1610	3/25	1238	SF19417-02	200		11100.201	56	X					1				
SV4-5'	3	1610	3/25	1243	ST-19417-03		Carry.1	118008		X				~7	1				
	3				57-19417-04		Jackson.2	M100.010		χ			_	42	1				
000-0		1610	3/15	25)	57-19417-05	200	Casey.]	M100.201	SG	χ				42	۱				
		_																	
													+						
Relinquished By (Signature)	F	Ren Ken		ind	Received By (Signature)				ed Nam	ne b	1 1	/			5	Total Number			
company ///		Date		Time	Company			Jack Date		<u>}</u>	Lester					Total Number	of Container	5	
centrauished By (Signature)	P	3/21/2 Drinted Nam	e) ,	250	John Env Received By Laboratory (1)	Signature)		S/2.S/2 Printe	22 ed Nam	le In	12	55			ackr	signature on the	that the above	e analyses h	ave been
Jones EN	D	Date 25/22		Time	Company JONS	Page 7 o	f 8	Date 3-2	5-	22	Tim	13	Z	>	reque	ested, and the in	nformation p and accura		n is correct

11007 FOREST PLACE Santa Fe Springs, ca 90670 WWW.Jonesenv.com

	SA	MPLE R	ECEII	PT FO	ORM		Jones	ID: _	STI	9417
CLIENT: <u>CCT</u> PROJECT: <u>Cervitor</u>			DATE	/TIME			′ED): D BY:			2132
Delivered by: 🛛 Client	by: Client Jones Courier UPS / FedEx / USPS AOther Jackso									
TEMPERATURE: Thermon	neter ID: T-1		(Correc	ted Ten	np.)	Calibra	ation (Due: 0	8/03/2022
Temperature Cooler #1	°(C ± the CF(-C	0.5°C)	-		_°C		Blan	k	Sample
Temperature Cooler #2	°(C ± the CF(-C).5°C)			°C		Blan	k	Sample
Temperature Criteria: 0 ≤ 6°C	(NO frozen co	ntainers)	(Criteria	Met?	_ Ye	es	□ No		
If criteria is not met:										
Sample Received on					Yes		No*			
Sample received Chil	led on same d	lay of sampl	ing?		Yes		No* Check	ad By		
SAMPLE CONDITION:							YES		NO*	N/A
Chain of Custody (COC) receive							Ø		□*	
Total number of containers red	ceived match	COC	ICIUPS	/ Feal	N		P	/	□*	
Sample container label(s) cons							Ø		•	
Sample container(s) intact and	in good cond	ition	16 	001000			ø		*	
Proper containers and sufficient	nt volume for	analyses red	quested	on CC)C		_	r	□*	
Proper preservative indicated	on COC/conta	iner for ana	lyses re	queste	ed		6		•	þ
Volatile analysis container(s) fr	ree of headspa	ace (EPA 8260	water)						*	Ø
Custody Seals Intact on Cooler	/Sample								□*	Þ
CONTAINER TYPE:	en saon d	and a more						2		
Solid:	Aque					Air /	Soil Gas	ed by		
5035 Kits: Glass Jar:		Amber B					Tedla	r Bag	: 5	
Sleeve:		VOAs: Poly Bott					C	6 hr		
Other:		5030 Kits						72 hr 5 5ay		
n en vereid i ver		Other:					Sumr			
Semple container (alleries) e	et eath CC							.)	(61	_)
e manine en els unital generations		t. 1969								
MILEAGE: Round Trip Mileage: _	10	Trave	el Time:	30	Smin	1	On S	ite Tir	ne:	Hr
		100								
*Complet	te Non-Confor	mance if ch	ecked				CI	necke	d by:	NA