

GROUNDWATER SAMPLING & ENGINEERING CONTROL INSPECTION 509-545 EAST MAIN STREET BRANFORD, CONNECTICUT

509 BRANFORD LLC

PROJECT NO.: 31401355.002

DATE: JANUARY 2025

WSP USA 6 RESEARCH DRIVE, SUITE 260 SHELTON, CT 06484

PHONE: +1 (203) 929-8555 FAX: +1 (203) 926-9140

wsp.com

SIGNATURES

PREPARED BY:

Darrick F. Jones, LEP

Vice President

		<u>Page</u>
1.0 INT	RODUCTION	1
2.0 SITE	LOCATION AND DESCRIPTION	1
3.0 SITE	BACKGROUND	2
4.1	Geologic Conditions	3
5.0 SCC 5.1 5.2 5.3	Quality Assurance/Quality Control Procedures	4 4
6.1	Groundwater Analytical Results	6 7
7.0 FINI	DINGS AND CONCLUSIONS	8
REFERI	INCES	10

TABLE 1: Summary of Fluid Level Measurements

TABLE 2: Summary of Analytical Results of Groundwater Samples

FIGURES

FIGURE 1: Site Location Map

FIGURE 2: Site Plan

APPENDICES

I Low Flow Sampling Logs

II Engineered Control Site Photographs

III Laboratory Analytical Report

1.0 INTRODUCTION

WSP USA Inc. (WSP) completed a groundwater sampling event and an inspection of the

Engineered Control at the property identified as 509-545 East Main Street in Branford,

Connecticut (the "Site"). The work was completed on behalf of 509 Branford LLC consistent

with the groundwater monitoring and inspection and maintenance plans outlined in the May

2015 Remedial Action Plan by HRP Associates, Inc. (HRP).

The Site consists of 10.73-acres of land that is occupied by the Shoreline Trailer Park. The

southern portion of the Site was historically utilized as a waste disposal area which included

filling with coal ash, slag, demolition materials, and tar. In September 2004, the Site was entered

into the Connecticut Department of Energy and Environmental Protection (CTDEEP) Voluntary

Remediation Program. An Engineered Control (EC) was approved by the CTDEEP to prevent

direct exposure to the underlying contaminated soils. The EC includes a synthetic pad or

concrete pad beneath the residential trailer units and one foot of clean fill over a geotextile

marking layer within the landscaped areas. The property owner is currently required to conduct

annual groundwater monitoring and a physical inspection to ensure the effectiveness of the

remediation.

The investigations presented in this report were performed under the supervision of a State of

Connecticut Licensed Environmental Professional (LEP).

2.0 SITE LOCATION AND DESCRIPTION

The Site is located on the south side of East Main Street (Route 1) in Branford, Connecticut

(Figure 1). The surrounding area includes commercial and residential properties. Nearby

commercial uses include a gasoline filling station, People's United Bank, Tremonte Auto Group,

and a medical office building.

The Site consists of 10.73-acres of land that is occupied by the Shoreline Trailer Park, which

currently consists of approximately 60 trailer homes. The remainder of the Site is associated

Groundwater Sampling & EC Inspection 509-545 East Main Street, Branford, CT Project No. 31401355.002

driveways, parking areas and surrounding grassed, and landscaped areas. The Site is serviced by

municipal water and sewer.

3.0 SITE BACKGROUND

Previous environmental investigations indicate that the Site was originally undeveloped land

which included vegetated areas and farmland. The incremental Site development as the Shoreline

Trailer Park began in 1954. Southern portion of the Site was identified as the East Main Street

Disposal area following a complaint of waste seeping from the ground. An inspection of the Site

by the CTDEEP revealed that an approximately 2-acres portion of the Site was filled with power

plant wastes that included metals, cyanide, volatile organic compounds (VOCs), tar and slag to

depths up to 10 feet below grade.

The Site was entered into the CTDEEP Voluntary Remediation Program in September 2004.

Remedial efforts included the use of an environmental land use restriction (ELUR) and an

Engineered Control (EC) to prevent exposure to the underlying impacted soils. The EC includes

synthetic pads, consisting of a Controlled Low Strength Material (CLSM), beneath certain

trailers, pavement, and one foot of clean fill over a geotextile marking fabric in the landscaped

areas. Some of the pads have been replaced with poured concrete pads.

Previous investigations have identified a groundwater plume at the Site related to the buried

waste materials. The plume was determined to be relatively stable with variable concentrations

as a result of seasonal groundwater elevation changes and the amount of waste material in

contact with the groundwater.

4.0 ENVIRONMENTAL SETTING

4.1 Regional Physiography

The Site is located on the U.S. Geological Survey (USGS), Branford, Connecticut topographical

quadrangle. The Site is situated within a slight topographic valley at an elevation of

approximately 40 feet to 50 feet above mean sea level (ft amsl) along East Main Street and at the

Groundwater Sampling & EC Inspection 509-545 East Main Street, Branford, CT Project No. 31401355.002

WSP USA January 2025 Page **2** eastern extent of the Site and 30 feet at central and western portions. Area topography also rises

up to the south of the Site.

4.2 Geologic Conditions

The surficial materials at the Site are mapped as two units. The approximate western portion of

the property is mapped as sand whereas the remaining eastern half is mapped as glacial till

indicating a dense matrix of sand, silt and gravel (Stone et al. USGS 1992). Bedrock is mapped

beneath the Site as buttress dolerite described as a dark-gray, brown- to gray-weathering trap

rock (Rodgers, 1985).

4.3 Hydrologic Characteristics and Known Groundwater Uses

Groundwater beneath the Site has a CTDEEP water-quality classification of Class "GA." A

"GA" classification indicates groundwater is suitable for direct human consumption without pre-

treatment and is likely a source of existing or potential public water supply (CTDEEP, 2009).

Groundwater has historically been encountered at the Site between approximately 0.1 to 4.9 feet

below grade. Groundwater is inferred to flow generally to from east to west; however,

topographic rise to the north and south of the Site is anticipated to result in variability within the

groundwater flow direction. We note that localized flow variations may exist as a result of

topography, stormwater drainage, streams, underground utilities or heterogeneous subsurface

conditions.

The Branford River and Cooke Pond are located approximately 1,200 feet west of the Site.

These surface water bodies are classified by the CTDEEP as Class "A." This designation

indicates designated uses which may include potable water supply, habitat for fish and other

aquatic life and wildlife; recreation; navigation; and water supply for industry and agriculture.

The CTDEEP Aquifer Protection Program web-based mapping series does not identify any

aquifer protection areas within a one-half mile radius of the Site.

Groundwater Sampling & EC Inspection 509-545 East Main Street, Branford, CT Project No. 31401355.002

WSP USA January 2025 The Site area is serviced by a public water supply. HRP completed a well receptor survey which indicated no evidence of any private potable water wells were located within approximately 500 feet of the Site.

5.0 SCOPE OF WORK

WSP completed a round of groundwater sampling and a visual inspection of the EC on December 19, 2024. Details pertaining to our investigation methods are presented below.

5.1 Groundwater Sampling

The depth to groundwater was measured and groundwater samples were collected from three existing monitoring wells (MW-01, MW-02, and MW-04R). Well MW-3 was enclosed by a locked fence surrounding the area trailer unit 73. Groundwater was encountered at depths of 0.2 to 2.6 feet below grade as summarized in Table 1. Low flow sampling procedures were completed using a peristaltic pump with dedicated Tygon tubing and low-density polyethylene tubing. Groundwater quality parameters (pH, conductivity, turbidity, dissolved oxygen, temperature and the oxidation-reduction potential) were monitored using a Horiba U-55 multiparameter water quality meter with measurements recorded on a low-flow sampling log (Appendix I). Following parameter stabilization, groundwater samples were collected and preserved for laboratory analysis. The monitoring well locations are shown on Figure 2.

The groundwater samples were placed in laboratory cleaned sample bottles, stored on ice, and transported under chain of custody to Phoenix for laboratory analysis of VOCs, polynuclear aromatic hydrocarbons (PAHs), extractable total petroleum hydrocarbons (ETPH), total RCRA 8 metals, and total cyanide.

5.2 Quality Assurance/Quality Control Procedures

The CTDEEP Quality Assurance/Quality Control (QA/QC) Work Group finalized Reasonable Confidence Protocols (RCPs) in August 2006. These RCPs are guidelines for enhanced QA/QC procedures for analytical methods and reporting. The CTDEEP currently recommends that

Groundwater Sampling & EC Inspection 509-545 East Main Street, Branford, CT Project No. 31401355.002

environmental professionals request that the laboratory follow the RCPs when producing data

that is used as the basis of decisions regarding compliance with the RSRs. Our QA/QC data

validation consisted of a review of Laboratory QA/QC Certification Form and confirmation of

attainment of data quality objectives (i.e., applicable regulatory criteria).

The laboratory analyses and reporting relied upon in making this work product were conducted

and produced by Phoenix in Manchester, Connecticut. Phoenix is a Connecticut Department of

Public Health Certified Laboratory (Registration No. PH-0618). The Phoenix laboratory data

report indicates compliance with the RCPs and the QA/QC procedures outlined in EPA 600/4-

79-019, "Handbook for Analytical Quality in Water and Waste Water" and method QA/QC

procedures from SW 846.

The results of our QA/QC procedures and analyses of the laboratory compliance with the RCPs

have not identified any issues that would qualify the use of the environmental data generated by

this investigation.

5.3 Engineered Control Inspection

WSP completed a site walk in the extent of the Engineered Control at the southern end of the

Site on December 19, 2024. This portion of the Site consists of several trailers, paved drives,

paved and/or dirt and gravel driveways, grassed areas and landscaped areas. Our inspection

included a survey of the accessible portions of the Site that are mapped as part of the Engineered

Control. Two new housing units were temporarily staged in a lawn area at the southern end of

the Site awaiting installation. Photographs showing an overview of the accessible observed areas

during our recent site walk are included in Appendix II.

6.0 SUMMARY OF ENVIRONMENTAL INVESTIGATION RESULTS

III VEGITO/ (ITOT) TREGGETO

The following section summarizes the results of the environmental investigations completed at

the Site. We have included a discussion regarding the application of the Remediation Standard

Groundwater Sampling & EC Inspection 509-545 East Main Street, Branford, CT Project No. 31401355.002

Regulations (RSRs) at the Site followed by a summary of the groundwater data. The locations of

the monitoring wells are included on Figure 2. Laboratory results of the groundwater data are

summarized in Table 2. Copies of the laboratory reports are presented in Appendix III.

6.1 Applying the Remediation Standard Regulations (RSRs)

The Site was entered into the CTDEEP Voluntary Remediation Program and is subject to the

Remediation Standard Regulations (RSRs). The regulatory criteria within the RSRs are risk

based cleanup standards promulgated to protect human health and the environment and as such,

provide a useful frame of reference for which to evaluate the degree of detected contamination.

Our recent groundwater investigation dataset is presented relative to the RSRs. Based on the

environmental setting of the Site the applicable groundwater regulatory criteria are summarized

below.

Groundwater Protection Criteria (GWPC)

The purpose of the Groundwater Protection Criteria (GWPC) is for the protection of human

health from the consumption of untreated groundwater. These standards are generally consistent

with the U.S. Environmental Protection Agency (U.S. EPA) National Primary Drinking Water

Standards (Maximum Contaminant Level) and the Connecticut Department of Health Water

Quality Standards. The GWPC is applicable as a result of the location of the Site in an area

classified by the CTDEEP as Class GA and therefore the groundwater data was compared to the

criteria.

Volatilization Criteria (VC)

The purpose of the Volatilization Criteria (VC) standard is to protect human health from risks

associated with inhalation of volatile vapors which may migrate through building slabs into

occupied spaces. Separate criteria are established for residential (R-VC) and

industrial/commercial (I/C-VC) areas. Criteria are available for groundwater, soil vapor and

indoor air concentrations; however, only compliance with the groundwater VC is necessary to

demonstrate compliance with the RSRs. Given the use of the Site, we have presented the

Groundwater Sampling & EC Inspection 509-545 East Main Street, Branford, CT Project No. 31401355.002

WSP USA January 2025 Page 6 groundwater data relative to the R-VC.

Surface Water Protection Criteria (SWPC)

The purpose of the SWPC standard is to evaluate if contaminated groundwater that discharges to

a surface water body interferes with the attainment of surface water quality standards in that

water body. The default SWPC were derived using the CTDEEP Water Quality Standards

multiplied by a conservative estimation of dilution as the groundwater plume enters the receiving

water body. Compliance with the SWPC is demonstrated on a site-wide basis by comparing the

average plume concentrations or plume concentrations directly upgradient of the point of

discharge to the receiving surface water body to the SWPC.

6.2 Groundwater Analytical Results

WSP collected groundwater samples from three existing monitoring wells (MW-01, MW-02, and

MW-04R) at the Site. These groundwater samples were analyzed for VOCs, ETPH, PAHs, select

metals and cyanide.

Consistent with prior sampling events, several petroleum related VOCs were detected in

groundwater from monitoring well MW-01 including benzene and naphthalene at concentrations

that exceed the GWPC and SWPC. Other petroleum related VOCs were below regulatory

criteria. VOCs were not detected in groundwater from monitoring wells MW-02 and MW-04R.

ETPH was also detected at MW-01 at a concentration of 1.6 mg/L which exceeds the GWPC and

SWPC. ETPH was not identified in the other sampled monitoring wells.

Several PAHs were detected in monitoring well MW-01. Benzo(a)anthracene, benzo(a)pyrene,

benzo(b)fluoranthene and benzo(k)fluoranthene were detected at concentrations that exceeded

the GWPC and SWPC. Other PAHs were also detected above the GWPC or the SWPC at well

MW-01. PAHs were not detected in groundwater from the other Site wells.

Total cyanide was detected in well MW-01 at a concentration that was below regulatory criteria.

Groundwater Sampling & EC Inspection 509-545 East Main Street, Branford, CT Project No. 31401355.002

Total cyanide was not identified in groundwater from the other sampled monitoring wells.

Metals were detected in groundwater from each of the Site wells at concentrations that were

consistent with typical background conditions with the exception of arsenic and lead in

groundwater from well MW-01. The concentrations of arsenic and lead both exceeded the

SWPC.

6.3 Visual Inspection of Engineered Control

The area of the Engineered Control (EC) was consistent with prior inspections with no evidence

of erosion or fallen trees. The lawn areas, pavement, and pads were observed to be intact. Some

puddled areas were identified across the EC in areas of gravel, grass and pavement as a result of

a recent rain event. No failures within the EC cap were noted.

7.0 FINDINGS AND CONCLUSIONS

This report represents the results of our December 2024 groundwater sampling event and

inspection of the Engineered Control of the property located at 509-545 East Main Street in

Branford, Connecticut (the "Site"). The Site consists of 10.73-acres of land that is occupied by

the Shoreline Trailer Park which includes approximately 60 trailers, paved driveways, and

associated parking areas, lawn, and landscaped areas.

The Site was developed with the current Shoreline Trailer Park in 1954. The southern portion of

the property was historically utilized as a waste disposal area which including filling with coal

ash, slag, demolition materials and tar.

The Site was entered into the CTDEEP Voluntary Remediation Program in September 2004. An

Engineered Control (EC) was approved by the CTDEEP to prevent direct exposure to the

underlying contaminated soils. The EC includes a synthetic pad beneath the trailers and one foot

of clean fill over a geotextile marking layer within the landscaped areas. Paved areas are

underlain by 8-inches of processed clean fill and the geotextile marking layer.

Groundwater Sampling & EC Inspection 509-545 East Main Street, Branford, CT Project No. 31401355.002

WSP USA January 2025 Page 8 Surficial materials beneath the Site are mapped as sands at the approximate western half of the

parcel and glacial till at the remaining eastern half of the Site. Groundwater at the Site is located

in an area identified by the CTDEEP as Class "GA", indicating that the groundwater is presumed

to be suitable for direct human consumption. Groundwater was observed within the monitoring

wells at the Site during this sampling round approximately 0.2 to 2.6 feet below grade.

Groundwater is inferred to flow generally to from east to west; however, topographic rise to the

north and south of the Site is anticipated to result in variability within the groundwater flow

direction. Additional localized flow variations may exist in other Site areas as a result of

irregular topography, underground utilities or heterogeneous subsurface conditions.

Our work included the sampling and laboratory analysis of three groundwater samples and the

visual inspection of the EC at the property. The findings of our work are summarized as follows:

1. The groundwater results were consistent with prior sampling results. Impacts to

groundwater were primarily detected at well MW-01 with elevated detections of

VOCs, ETPH, PAHs and cyanide. The concentrations of benzene, several PAHs,

and cyanide exceed the GWPC and/or the numerical SWPC. Metals including

arsenic and lead also exceeded the GWPC and/or SWPC. We note that

downgradient groundwater can be used to demonstrate compliance with the

SWPC.

2. The Engineered Control (EC) was in in-tact condition with no evidence of

erosion, fallen trees, or pavement failure. The EC appeared to be functioning as an

effective barrier to the underlying polluted soils.

Our findings indicate that the waste disposal area remains a source for groundwater

contamination at the Site in the area of monitoring well MW-01. The constituents of concern

appear to be in steady state with little variation over multiple sampling events. HRP has

demonstrated that no potable wells are present within 500 feet of the Site. Accordingly, continual

annual groundwater monitoring at the Site during the EC inspection is prudent to monitor the

plume.

Groundwater Sampling & EC Inspection 509-545 East Main Street, Branford, CT Project No. 31401355.002

January 2025

REFERENCES

- Connecticut Department of Energy and Environmental Protection (CTDEEP). 2021. *Remediation Standard Regulations*. Regulations of Connecticut State Agencies Sections 22a-133k-1 through 22a-133k-3.
- CTDEEP 2006. Guidance for Collecting and Preserving Soil and Sediment Samples for Laboratory Determination of Volatile Organic Compounds.
- CTDEEP 2007. Site Characterization Guidance Document.
- CTDEEP 2009. Geographic Information Systems (GIS) electronic files.
- Connecticut Department of Public Health (CTDPH) 2003. Geographic Information Systems (GIS) electronic files.
- HRP Associates, Inc. (HRP). 2017. Groundwater Monitoring and Inspection of Engineered Control, Shoreline Trailer Park, 509-545 East Main Street, Branford, Connecticut.
- Rodger, John, Bedrock Geological Map of Connecticut, CTDEEP/United States Geological Survey, 1985.
- Stone, Janet, Radway, et al, Surficial Materials Map of Connecticut, United States Geological Survey, 1992.
- USGS 1984. Branford, Connecticut Quadrangle Map.

Table 1

SHORELINE TRAILER PARK 509-545 EAST MAIN STREET BRANFORD, CONNECTICUT

Summary of Well Gauging Data

Well ID / Top of casing elevation (feet) 1/	Date	Depth to water below casing (ft)	Depth to water below ground surface (ft)	Groundwater elevation (feet) 1/
MW-01	6/13/2016	4.48	2.48	96.90
101.38	6/27/2017	4.05	2.05	97.33
	4/18/2018	2.33	0.33	99.05
	6/5/2019	3.37	1.37	98.01
	4/30/2020	2.95	0.95	98.43
	12/9/2022	2.56	0.56	98.82
	12/21/2023	2.05	0.05	99.33
	12/19/2024	2.20	0.20	99.18
MW-02	6/13/2016	7.12	4.70	97.33
104.45	6/27/2017	6.89	4.47	97.56
	4/18/2018	5.00	2.58	99.45
	6/5/2019	5.68	3.26	98.77
	4/30/2020	5.79	3.37	98.66
	12/9/2022	5.45	3.03	99.00
	12/21/2023	4.34	1.92	100.11
	12/19/2024	4.38	1.96	100.07
MW-03	6/13/2016	6.45	4.78	98.81
105.26	6/27/2017	6.23	4.56	99.03
	4/18/2018	2.17	0.50	103.09
	6/15/2009	NM	NM	NM
	4/30/2020	NM	NM	NM
	12/9/2022	NM	NM	NM
	12/21/2023	NM	NM	NM
	12/19/2024	NM	NM	NM
MW-04R	6/13/2016	4.90	4.90	96.73
101.63	6/27/2017	4.65	4.65	96.98
	4/18/2018	3.34	3.34	98.29
	6/5/2019	3.60	3.60	98.03
	4/30/2020	3.89	3.89	97.74
	12/9/2022	3.96	3.96	97.67
	12/21/2023	2.74	2.74	98.89
	12/19/2024	2.60	2.60	99.03

^{1/} Elevations are based on HRP survey data and an arbitary datum.

NM: Depth to water was not measured as the well was not accessible.

PYRAMID REAL ESTATE GROUP 509-545 EAST MAIN STREET BRANFORD, CONNECTICUT

Analytical Results of Groundwater Samples

					A	analytical Re	sults of Grou	ndwater San	nples								
		<u>R</u>	Legulatory Criter	ria_	MW-01	MW-01	MW-01	MW-01	MW-01	MW-01	MW-01	MW-01	MW-02	MW-02	MW-02	MW-02	MW-02
	Units	GWPC	SWPC	R-GWVC	6/27/17	4/19/18	6/5/19	4/30/20	12/30/21	12/9/22	12/18/23	12/19/24	6/27/17	4/19/18	6/5/19	4/30/20	12/30/21
Total Metals & Cyanide																	
Arsenic	mg/L	0.05	0.004	NA	ND<0.004	0.007	ND<0.004	0.009	ND<0.004	ND<0.004	ND<0.004	0.008	ND<0.004	ND<0.004	ND<0.004	ND<0.004	ND<0.004
Barium	mg/L	1	NE	NA	0.425	0.408	0.448	0.46	0.178	0.406	0.396	0.399	0.046	0.016	0.043	0.022	0.234
Cadmium	mg/L	0.005	0.006	NA	0.002	ND<0.001	0.002	0.004	ND<0.001	ND<0.001	0.002	ND<0.001	ND<0.001	ND<0.001	ND<0.001	ND<0.001	ND<0.001
Chromium	mg/L	0.05	1.2	NA	0.005	0.016	0.008	0.018	0.001	0.007	0.003	0.016	ND<0.001	ND<0.001	ND<0.001	ND<0.001	ND<0.001
Lead	mg/L	0.015	0.013	NA	0.008	0.066	0.021	0.088	ND<0.002	0.012	0.013	0.06	ND<0.002	ND<0.002	ND<0.002	ND<0.002	ND<0.002
Mercury	mg/L	0.002	0.0004	NA	ND<0.0002	0.0003	ND<0.0002	0.0005	ND<0.0002	ND<0.0002	ND<0.0002	0.0002	ND<0.0002	ND<0.0002	ND<0.0002	ND<0.0002	ND<0.0002
Selenium	mg/L	0.05	0.05	NA	ND<0.010	ND<0.010	ND<0.010	ND<0.010	ND<0.010	ND<0.010	ND<0.010	ND<0.010	ND<0.010	ND<0.010	ND<0.010	ND<0.010	ND<0.010
Silver	mg/L	0.036	0.012	NA	ND<0.001	ND<0.001	ND<0.005	ND<0.001	ND<0.001	ND<0.001	ND<0.001	ND<0.001	ND<0.001	ND<0.001	ND<0.001	ND<0.001	ND<0.001
Total Cyanide	mg/L	0.2	0.052	NA	1.92	1.68	1.72	1.03	1.73	1.72	0.402	0.02	ND<0.010	ND<0.010	ND<0.010	ND<0.010	ND<0.010
Extractable Total Petroleum Hydrocarbons (ETPH)	mg/L	0.25	NE	NA	0.86	1.3	1.3	1.5	1.4	1.6	0.25	1.6	ND<0.070	ND<0.067	ND<0.070	ND<0.069	ND<0.067
Volatile Organic Compounds (VOCs)					41.		•	•	•	•				•	•	•	Ī
1,2,4-Trimethylbenzene	ug/L	140	150	940	2.9	4.9	4.2	ND<20	5	7.6	3.6	5.3	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0
1,3,5-Trimethylbenzene	ug/L	140	260	730	1.5	2.2	1.6	ND<20	1.6	1.8	ND<1.0	1	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0
Benzene	ug/L	1	710	215	13	15	11	16	11	21	2	16	ND<0.70	ND<0.70	ND<0.70	ND<0.70	ND<0.70
Bromodichloromethane	ug/L	1	510	1.1	ND	ND<0.50	ND<0.50	ND<10	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND	ND<0.50	ND<0.50	ND<0.50	ND<0.50
Chloroform	ug/L	6	14,100	26	ND<1.0	ND<1.0	ND<1.0	ND<10	ND<1.0	ND<10	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0
Ethylbenzene	ug/L	700	580,000	50,000	130	120	74	100	19	36	10	33	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0
Isopropylbenzene	ug/L	25	210	900	6.5	7.6	5.4	ND<20	5.3	10	4	8.4	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0
Naphthalene	ug/L	280	210	NE	420	580	330	750	200	460	63	440	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0
n-Butylbenzene	ug/L	350	10,000	1,600	ND<1.0	1.0	ND<1.0	ND<20	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0
n-Propylbenzene	ug/L	50	10,000	1,200	ND<1.0	1.0	ND<1.0	ND<20	1	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0
p-Isopropyltoluene	ug/L	25	200	870	ND<1.0	1.5	1.0	ND<20	1.1	1.6	ND<1.0	1.1	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0
Toluene	ug/L	1,000	4,000,000	23,500	3.2	3.5	2.2	ND<20	ND<1.0	1.5	ND<1.0	1.2	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0
Total Xylenes	ug/L	530	270	21,300	8.1	10	9.2	ND<20	8.5	12.8	3.2	8	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0
Polynuclear Aromatic Hydrocarbons (PAHs)																	
2-Methylnaphthalene	ug/L	28	62	NA	ND<0.05	ND<16	6.9	9.2	4.6	6.2	3.4	12	ND<0.05	ND<0.05	ND<0.05	ND<0.50	ND<0.50
Acenaphthene	ug/L	420	150	NA	33	63	71	81	48	96	38	52	ND<0.05	ND<0.05	ND<0.05	ND<0.50	ND<0.50
Acenaphthylene	ug/L	420	0.3	NA	1.6	ND<6.6	1.9	1.1	1.9	1.6	1.1	1.3	ND<0.05	ND<0.05	ND<0.05	ND<0.30	ND<0.30
Anthracene	ug/L	2,000	1,100,000	NA	4.1	ND<16	9.5	6.5	5.2	4.2	3.3	5.6	ND<0.05	ND<0.05	ND<0.05	ND<0.50	ND<0.50
Benz(a)anthracene	ug/L	0.06	0.3	NA	0.66	ND<16	5.3	3.5	2.5	1.5	1.2	1.9	ND<0.05	ND<0.05	ND<0.05	ND<0.05	ND<0.05
Benzo(a)pyrene	ug/L	0.2	0.3	NA	0.24	ND<16	3.2	1.1	2	0.99	0.96	1.3	ND<0.05	ND<0.05	ND<0.05	ND<0.20	ND<0.20
Benzo(b)fluoranthene	ug/L	0.08	0.3	NA	0.51	ND<16	2.9	2.7	1.7	0.85	0.77	1.2	ND<0.05	ND<0.05	ND<0.05	ND<0.07	ND<0.07
Benzo(ghi)perylene	ug/L	0.48	150	NA	0.21	ND<7.5	2.3	1	0.91	ND<0.48	0.52	0.82	ND<0.05	ND<0.05	ND<0.05	ND<0.48	ND<0.48
Benzo(k)fluoranthene	ug/L	0.5	0.3	NA	0.38	ND<16	3.1	1.8	2	0.78	0.7	1.1	ND<0.05	ND<0.05	ND<0.05	ND<0.30	ND<0.30
Chrysene	ug/L	4.8	0.54	NA	0.65	ND<16	4.1	3.3	2.2	1.2	1	1.6	ND<0.05	ND<0.05	ND<0.05	ND<0.50	ND<0.50
Dibenz(a,h)anthracene	ug/L	0.1	0.3	NA	0.11	ND<7.5	0.66	0.49	0.3	0.12	0.16	0.18	ND<0.01	ND<0.01	ND<0.01	ND<0.10	ND<0.10
Fluoranthene	ug/L	280	3,700	NA	5.7	27	25	27	12	7.4	5.3	8.8	ND<0.05	ND<0.05	ND<0.05	ND<0.50	ND<0.50
Fluorene	ug/L	280	140,000	NA	29	53	57	75	32	58	26	40	ND<0.05	ND<0.05	ND<0.05	ND<0.50	ND<0.50
Indeno(1,2,3-cd)pyrene	ug/L	0.1	0.54	NA	0.25	ND<8.0	2.5	1.2	1.3	0.55	0.62	0.79	ND<0.05	ND<0.05	ND<0.05	ND<0.10	ND<0.10
Naphthalene	ug/L	280	210	NA	ND<0.10	510	430	400	110	260	25	240	ND<0.10	ND<0.09	ND<0.09	ND<0.50	ND<0.50
Phenanthrene	ug/L	200	14	NA	9.7	33	35	50	17	34	16	23	ND<0.05	ND<0.05	ND<0.05	ND<0.06	ND<0.06
Pyrene	ug/L	200	110,000	NA	2.7	20	17	6	7.6	4.7	3.9	6.3	ND<0.05	ND<0.05	ND<0.05	ND<0.50	ND<0.50

mg/L: milligrams per liter ug/L: micrograms per liter

GWPC: Groundwater Protection Criteria SWPC: Surface Water Protection Criteria

R-GWVC: Residential Groundwater Volatilization Criteria

Bold: Exceeds one or more criterion

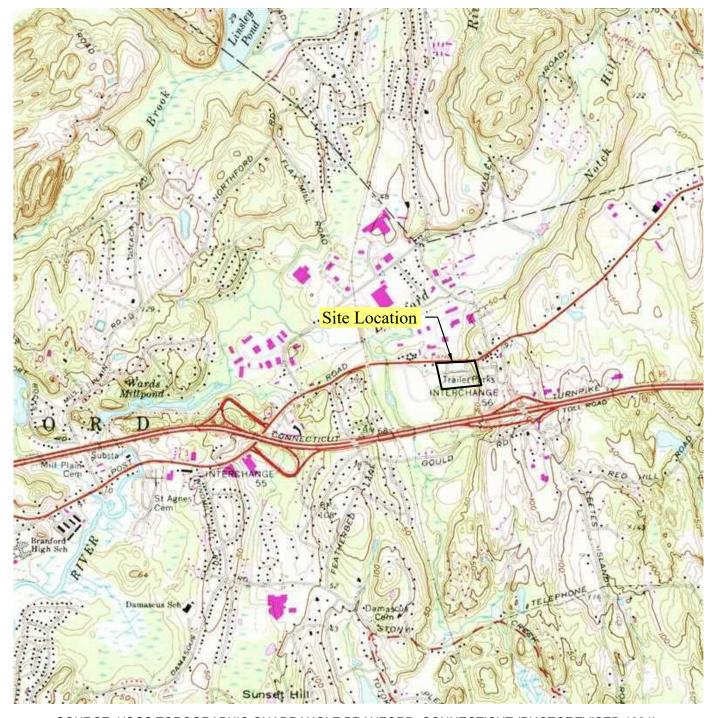
ND<: Not detected above laboratory reporting criteria

PYRAMID REAL ESTATE GROUP 509-545 EAST MAIN STREET BRANFORD, CONNECTICUT

Analytical Results of Groundwater Samples

					A	naiyucai Kesi	ilts of Ground	iwatei Sampi	es								
			egulatory Criter		MW-02	MW-02	MW-02	MW-03	MW-03	MW-04R							
	Units	GWPC	SWPC	R-GWVC	12/9/22	12/18/23	12/19/24	6/27/17	4/19/18	6/27/17	4/19/18	6/5/19	4/30/20	12/30/21	12/9/22	12/18/23	12/19/24
Total Metals & Cyanide																	
Arsenic	mg/L	0.05	0.004	NA	ND<0.004	ND<0.004	ND<0.004	ND<0.004	ND<0.004	ND<0.004	ND<0.004	ND<0.004	ND<0.004	ND<0.004	ND<0.004	ND<0.004	ND<0.004
Barium	mg/L	1	NE	NA	0.038	0.02	0.029	0.072	0.053	0.037	0.052	0.015	0.03	ND<0.002	0.022	0.016	0.016
Cadmium	mg/L	0.005	0.006	NA	ND<0.001	ND<0.001	ND<0.001	ND<0.001	ND<0.001	ND<0.001	ND<0.001	ND<0.001	ND<0.001	ND<0.001	ND<0.001	ND<0.001	ND<0.001
Chromium	mg/L	0.05	1.2	NA	ND<0.001	ND<0.001	ND<0.001	0.001	ND<0.001	ND<0.001	0.001	ND<0.001	ND<0.001	ND<0.001	ND<0.001	0.002	0.001
Lead	mg/L	0.015	0.013	NA	0.001	ND<0.001	ND<0.001	0.027	0.002	ND<0.002	ND<0.002	ND<0.002	ND<0.002	ND<0.002	ND<0.001	ND<0.001	ND<0.001
Mercury	mg/L	0.002	0.0004	NA	ND<0.0002	ND<0.0002	ND<0.0002	ND<0.0002	ND<0.0002	ND<0.0002	ND<0.0002	ND<0.0002	ND<0.0002	ND<0.0002	ND<0.0002	ND<0.0002	ND<0.0002
Selenium	mg/L	0.05	0.05	NA	ND<0.010	ND<0.010	ND<0.010	ND<0.010	ND<0.010	ND<0.010	ND<0.010	ND<0.010	ND<0.010	ND<0.010	ND<0.010	ND<0.010	ND<0.010
Silver	mg/L	0.036	0.012	NA	ND<0.001	ND<0.001	ND<0.001	ND<0.001	ND<0.001	ND<0.001	ND<0.001	ND<0.001	ND<0.001	ND<0.001	ND<0.001	ND<0.001	ND<0.001
Total Cyanide	mg/L	0.2	0.052	NA	ND<0.010	ND<0.010	ND<0.010	ND<0.010	0.013	ND<0.010							
Extractable Total Petroleum Hydrocarbons (ETPH)	mg/L	0.25	NE	NA	ND<0.075	ND<0.074	ND<0.071	ND<0.070	ND<0.067	ND<0.070	ND<0.067	ND<0.070	ND<0.069	ND<0.067	ND<0.072	ND<0.070	ND<0.067
Volatile Organic Compounds (VOCs)																	
1,2,4-Trimethylbenzene	ug/L	140	150	940	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0
1,3,5-Trimethylbenzene	ug/L	140	260	730	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0
Benzene	ug/L	1	710	215	ND<0.70	ND<0.70	ND<0.70	ND<0.70	ND<0.70	ND<0.70	ND<0.70	ND<0.70	ND<0.70	ND<0.70	ND<0.70	ND<0.70	ND<0.70
Bromodichloromethane	ug/L	1	510	1.1	ND<0.50	ND<0.50	ND<0.50	ND	ND<0.50	ND	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	3.4	ND<0.50
Chloroform	ug/L	6	14,100	26	ND<10	ND<1.0	ND<1.0	ND<1.0	ND<1.0	14	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<10	24	ND<1.0
Ethylbenzene	ug/L	700	580,000	50,000	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0
Isopropylbenzene	ug/L	25	210	900	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0
Naphthalene	ug/L	280	210	NE	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0
n-Butylbenzene	ug/L	350	10,000	1,600	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0
n-Propylbenzene	ug/L	50	10,000	1,200	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0
p-Isopropyltoluene	ug/L	25	200	870	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0
Toluene	ug/L	1,000	4,000,000	23,500	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0
Total Xylenes	ug/L	530	270	21,300	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0
Polynuclear Aromatic Hydrocarbons (PAHs)																	
2-Methylnaphthalene	ug/L	28	62	NA	ND<0.50	ND<0.47	ND<0.50	ND<0.05	ND<0.05	ND<0.05	ND<0.05	ND<0.05	ND<0.50	ND<0.47	ND<0.53	ND<0.52	ND<0.48
Acenaphthene	ug/L	420	150	NA	ND<0.50	ND<0.47	ND<0.50	ND<0.05	ND<0.05	ND<0.05	ND<0.05	ND<0.05	ND<0.50	ND<0.47	ND<0.53	ND<0.52	ND<0.48
Acenaphthylene	ug/L	420	0.3	NA	ND<0.30	ND<0.28	ND<0.30	ND<0.05	ND<0.05	ND<0.05	ND<0.05	ND<0.05	ND<0.30	ND<0.28	ND<0.30	ND<0.30	ND<0.29
Anthracene	ug/L	2,000	1,100,000	NA	ND<0.50	ND<0.47	ND<0.50	ND<0.05	ND<0.05	ND<0.05	ND<0.05	ND<0.05	ND<0.50	ND<0.47	ND<0.53	ND<0.52	ND<0.48
Benz(a)anthracene	ug/L	0.06	0.3	NA	ND<0.05	ND<0.05	ND<0.05	ND<0.05	ND<0.05	ND<0.05	ND<0.05	ND<0.05	ND<0.05	ND<0.05	ND<0.05	ND<0.05	ND<0.05
Benzo(a)pyrene	ug/L	0.2	0.3	NA	ND<0.20	ND<0.19	ND<0.20	ND<0.05	ND<0.05	ND<0.05	ND<0.05	ND<0.05	ND<0.20	ND<0.19	ND<0.21	ND<0.20	ND<0.19
Benzo(b)fluoranthene	ug/L	0.08	0.3	NA	ND<0.07	ND<0.07	ND<0.07	ND<0.05	ND<0.05	ND<0.05	ND<0.05	ND<0.05	ND<0.07	ND<0.07	ND<0.07	ND<0.07	ND<0.07
Benzo(ghi)perylene	ug/L	0.48	150	NA	ND<0.48	ND<0.45	ND<0.48	ND<0.05	ND<0.05	ND<0.05	ND<0.05	ND<0.05	ND<0.48	ND<0.45	ND<0.50	ND<0.48	ND<0.46
Benzo(k)fluoranthene	ug/L	0.5	0.3	NA	ND<0.30	ND<0.28	ND<0.30	ND<0.05	ND<0.05	ND<0.05	ND<0.05	ND<0.05	ND<0.30	ND<0.28	ND<0.30	ND<0.30	ND<0.29
Chrysene	ug/L	4.8	0.54	NA	ND<0.50	ND<0.47	ND<0.50	ND<0.05	ND<0.05	ND<0.05	ND<0.05	ND<0.05	ND<0.50	ND<0.47	ND<0.53	ND<0.52	ND<0.48
Dibenz(a,h)anthracene	ug/L	0.1	0.3	NA	ND<0.10	ND<0.09	ND<0.10	ND<0.01	ND<0.01	ND<0.01	ND<0.01	ND<0.01	ND<0.10	ND<0.09	ND<0.11	ND<0.10	ND<0.10
Fluoranthene	ug/L	280	3,700	NA	ND<0.50	ND<0.47	ND<0.50	ND<0.05	ND<0.05	ND<0.05	ND<0.05	ND<0.05	ND<0.50	ND<0.47	ND<0.53	ND<0.52	ND<0.48
Fluorene	ug/L	280	140,000	NA	ND<0.50	ND<0.47	ND<0.50	ND<0.05	ND<0.05	ND<0.05	ND<0.05	ND<0.05	ND<0.50	ND<0.47	ND<0.53	ND<0.52	ND<0.48
Indeno(1,2,3-cd)pyrene	ug/L	0.1	0.54	NA	ND<0.10	ND<0.09	ND<0.10	ND<0.05	ND<0.05	ND<0.05	ND<0.05	ND<0.05	ND<0.10	ND<0.09	ND<0.11	ND<0.10	ND<0.10
Naphthalene	ug/L	280	210	NA	ND<0.50	ND<0.47	ND<0.50	ND<0.10	ND<0.09	ND<0.10	ND<0.09	ND<0.09	ND<0.50	ND<0.47	ND<0.53	ND<0.52	ND<0.48
Phenanthrene	ug/L	200	14	NA	ND<0.06	ND<0.06	ND<0.06	ND<0.05	ND<0.05	ND<0.05	ND<0.05	ND<0.05	ND<0.06	ND<0.06	ND<0.06	ND<0.06	ND<0.06
Pyrene	ug/L	200	110,000	NA	ND<0.50	ND<0.47	ND<0.50	ND<0.05	ND<0.05	ND<0.05	ND<0.05	ND<0.05	ND<0.50	ND<0.47	ND<0.53	ND<0.52	ND<0.48

mg/L: milligrams per liter ug/L: micrograms per liter


GWPC: Groundwater Protection Criteria SWPC: Surface Water Protection Criteria

R-GWVC: Residential Groundwater Volatilization Criteria

Bold: Exceeds one or more criterion

ND<: Not detected above laboratory reporting criter

FIGURES

SOURCE: USGS TOPOGRAPHIC QUADRANGLE BRANFORD, CONNECTICUT (PHOTOREVISED 1984).

509-545 EAST MAIN STREET BRANFORD, CONNECTICUT

SITE LOCATION MAP

DATE	REVISED	PREPARED BY	:				
		111	5		WSP USA 4 Research I Suite 204 Shelton, Coi (203) 929-85	nnecticut 06	484
DRAWN:	RAC	CHECKED:	MS	DATE:	08/04/18	FIGURE:	1

PROPERTY BOUNDARY

MONITOR WELL LOCATION

APPROXIMATE LIMITS OF ENGINEERED CONTROL

509-545 EAST MAIN STREET BRANFORD, CONNECTICUT

SITE PLAN

	DATE	REVISED	PREPARED BY	r:		WSP USA 4 Research Suite 204 Shelton, Cc (203) 929-8:	onnecticut 0	6484	
X	DRAWN:	RAC	CHECKED:	MS	DATE:	06/05/19	FIGURE:	2	

WSP USA

PAGE <u>1</u> OF <u>1</u>

SAMPLE DATE: 12/19/2024

LOW-FLOW SAMPLING LOG TOTAL # WELLS: _

			_		2011 0711111 21110						
Client Na	ame:		Pyram	id		Sample Pump:	Geopu	ımp (US ENV)			
Project L	ocation:	509-	545 E Main S	treet Bran	ford	Tubing Type:	LDPE -	Tygon -			
Sampler((s):		MS			Monitoring Equipment: Horiba (US ENV)					
Well I.D.			MW-01		_	Screen Setting (ft btoc): to					
Well Dia	meter (i	nches): _	2			Tubing Intake (ft btoc):					
Total Dep	pth (ft bt	oc):				Comments: _	Pump on a	t 1201			
Depth to	Water (ft btoc):	2.20 (PVC) 2	2.90 (stan	dpipe)*	Horiba full at 1	205				
Well Con	ndition:	standpipe	; no plug								
Tin	ne		Evacuation		Water Qua	lity Monitoring F	Parameters				
		Water	Rate	рН	Conductivity	Turbidity	Dissolved	Temperature	ORP		
(hou	ırs)	(tt btoc)	(ml/min)		(mS/cm)	(NIU)	oxygen (mg/l)	(°C)	(mV)		
120	06	3.85	150	6.03	0.934	7.8		10.47	-67		
120	09	3.85		6.08	0.933	8.5		10.66	-86		
121	12	3.85		6.09	0.932	7.0		10.66	-87		
121	15	3.85		6.09	0.932	7.9		10.68	-87		
*DO	a.a. la.a.:!h										
*DO not o	on nortd	а									
		Stabi	lization of Par	ameters (s	tabilization achieved for thr	ee consecutive r	neasuremen	nts)			
Tim	ne	Depth to	Total	рН	Conductivity	Turbidity		Temperature	ORP		
FROM	ТО	Water	Removed >		(0/)	(0/)	oxygen	(04)	()		
1209	1212	(ft btoc) 0.00	Change in	0.01	(%) 0.1%	(%) 17.6%	(%)	(%) 0.0%	(mv) 1		
1212	1215	0.00		0.00	0.0%	11.4%		0.2%	0		
1209	1215	0.00		0.01	0.1%	7.1%		0.2%	1		
1200	1210	0.00		0.01	0.170	7.170		0.270	•		
Recomm	nended	≤ 0.3 ft.	NA	+/- 0.1	. / 20/	<5 NTU	+/- 10%	. / 20/	. / 10		
Stabiliz		total	INA	unit	+/- 3%	or +/- 10%	if >0.5	+/- 3%	+/- 10 mv		
Stabiliz (Yes/		TRUE	$>\!\!<$	TRUE	TRUE	FALSE		TRUE	TRUE		
Sample		1215			VOCs, ETPH, PAHs, 8 RCF	RA Metals, Total	cyanide				
ft btoc ml/min		feet below to milliliters per	minute	m	FU Nephelometric Turbidii g/I milligrams per liter		°C mv	degrees Celsius millivolts			
μs/cm		microseimen	s per centimeter	ms/cm	milliseimens per centir	neter					

WSP USA

LOW-FLOW SAMPLING LOG

PAGE	1	OF	1

 SAMPLE DATE:
 12/19/2024

 TOTAL # WELLS:
 3

Client Nam	ne:		Pyramio	d		Sample Pump:	Geop	ump (US ENV)				
Project Loc	cation:	50	09-545 E Main Str	eet Branfor	d	Tubing Type:	LDPE -	Tygon -				
Sampler(s)):		MS			Monitoring Equip	ment:	Horiba (US EN	1V)			
Well I.D.			MW-02			Screen Setting (ft	btoc):	to				
Nell Diam	eter (inche	es):	2			Tubing Intake (ft btoc):						
Γotal Deptl	h (ft btoc):					Comments: Pump on at 1238 - initial water to ground						
Depth to W	ater (ft bto	oc):	4.38			Horiba full at 1300) - black floating	g particles				
Well Condi	ition:	standpipe; n	o plug									
Tir	me	Depth to	Evacuation		Water Q	uality Monitoring Pa	rameters					
		Water	Rate	рН	Conductivity	Turbidity	Dissolved	Temperature	ORP			
(hou	ıro)	(ft btoc)	(ml/min)		(mS/cm)	(NTU)	oxygen (mg/l)	(°C)	(m) ()			
(hou	02	4.49	150	5.90	0.227	1.0	(1119/1)	14.99	(mV) 102			
	05	4.49	150	5.90	0.228	1.1		14.92	110			
	08	4.49	100	5.91	0.230	0.6		14.83	113			
13	11	4.49		5.93	0.229	0.0		14.69	116			
13	14	4.49		5.93	0.228	0.0		14.50	123			
DO not or	horiba											
				of Parameter	s (stabilization achieved for three	consecutive measure	ements)					
Tir	me	Depth to	Total Removed > Change in	рН	Conductivity	Turbidity	Dissolved	Temperature	ORP			
FROM	TO	Water (ft btoc)	Storage (Y/N)?		(%)	(%)	oxygen (%)	(%)	(mv)			
1308	1311	0.00		0.02	0.4%	< 5		0.9%	3			
1311	1314	0.00	•	0.00	0.4%	< 5		1.3%	7			
1308	1314	0.00		0.02	0.9%	< 5		2.2%	10			
			•									
Recomm		≤ 0.3 ft.	NA	+/- 0.1	+/- 3%	<5 NTU	+/- 10%	+/- 3%	+/- 10 mv			
Stabili Stabili:		total		unit		or +/- 10%	if >0.5 mg/L					
(Yes		TRUE	\nearrow	TRUE	TRUE	TRUE		TRUE	TRUE			
Sample T	ime:	1315			VOCs, ETPH, PAHs, 8 RCRA Met	als, Total cyanide						
ft btoc		feet below top o	•	NTU	Nephelometric Turbidity Uni	its	°C	degrees Celsius				
ml/min μs/cm		milliliters per mir microseimens p		mg/l ms/cm	milligrams per liter milliseimens per centimeter		mv	millivolts				
			· · · · · · · · · · · · · · · · · · ·		·	·		·				

WSP USA

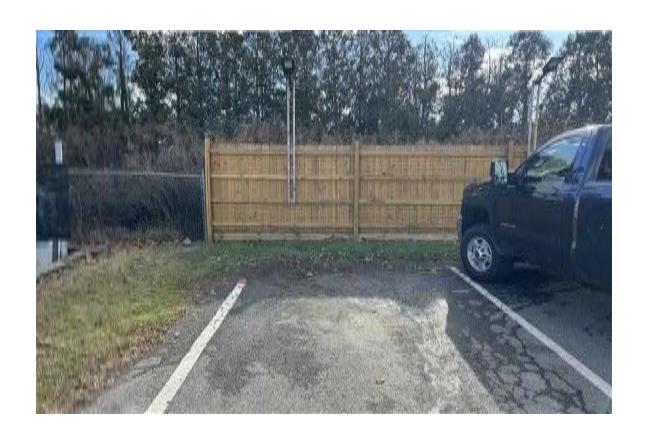
LOW-FLOW SAMPLING LOG

PAGE <u>1</u> OF <u>1</u>

SAMPLE DATE: 12/19/2024

TOTAL # WELLS: 3

Project Location: 509-545 E Main Street Branford Monitoring Equipment: Horiba (US ENV)													
Marcon M				Pyram	id		Sample Pump:						
Mell Diameter (Inches): 2			509-		treet Branfo								
Tubing Intake (ft btoc):													
Total Depth (if bloc):	Well I.D.			MW-04R			Screen Setting (ft btoc): to						
Depth to Water (ft btoc): 2.6 Horiba full at 1111 Horiba full at 1111	Well Dia	meter (ind	ches): _	2			Tubing Intake (ft btoc):						
Nell Condition: flush mount: two bolts; expansion plug	Total De	pth (ft bto	nc):				Comments: Pump on at 1107						
Time	Depth to	Water (ft	btoc):	2.6			Horiba full at 11	11					
Water (hours) Water (hours) Water (hours) PH Conductivity Turbidity (hours) Dissolved (hours) CC (hours)	Well Cor	ndition:	flush mour	nt; two bolts; e	xpansion p	olug							
(hours) (ft btoc) (ml/min) (ms/cm) (NTU) (ms/cm) (nTU) (mg/l) (°C) (mV) 1111 3.02 -150 6.10 0.170 12.1 17.91 209 1111 3.02 6.33 0.168 11.4 17.39 194 1117 3.02 6.35 0.178 10.4 15.25 196 1120 3.02 6.39 0.182 9.9 14.54 200 1123 3.02 6.36 0.184 10.2 14.31 203 1126 3.02 6.38 0.185 10.7 14.30 203 1129 3.02 6.38 0.185 10.7 14.29 204 DO not on horiba Depth to Vater Total Removed Vater Vater Total Removed Vater Vater Total Removed Vater Va	Tir	ne				Water Qual	ity Monitoring Pa	arameters					
(hours) (ft btoc) (m/l/min) (ms/cm) (NTU) (mg/l) (°C) (mV)			Water	Kate	рН	Conductivity	Turbidity		Temperature	ORP			
1111 3.02	(ho	urs)	(ft btoc)	(ml/min)		(mS/cm)	(NTU)		(°C)	(m\/)			
1114 3.02 6.33 0.168 11.4 17.39 194	•				6.10			··············					
1117 3.02 6.35 0.178 10.4 15.25 196													
1120 3,02 6,39 0.182 9.9 14.54 200 1123 3,02 6,36 0.184 10.2 14.31 203 1126 3,02 6,38 0.185 10.7 14.30 203 1129 3,02 6,38 0.185 10.0 14.29 204													
1123 3,02 6,36 0.184 10.2 14.31 203 1126 3.02 6,38 0.185 10.7 14.30 203 1129 3.02 6,38 0.185 10.0 14.29 204 1129 3.02 6,38 0.185 10.0 14.29 204 1129 3.02 6,38 0.185 10.0 14.29 204 1120 10.0 14.29 204 1121 1122 1124 1124 1124 1124 1124 1124 1125 1129 0.00 123 1124 0.00 0.02 0.5% 4.7% 0.1% 0.1% 0.1% 1.1 1123 1126 0.00 0.02 0.5% 2.0% 0.1% 1.1 1124 1129 0.00 0.02 0.5% 2.0% 0.1% 1.1 1125 1126 1129 0.00 1.1% 1.1 1126 1129 0.00 0.02 0.5% 2.0% 0.1% 1.1 1127 1128 1129 0.00 0.02 0.5% 2.0% 0.1% 1.1 1128 1129 0.00 0.02 0.5% 2.0% 0.1% 1.1 1129 1120 1													
1126 3.02 6.38 0.185 10.7 14.30 203 1129 3.02 6.38 0.185 10.0 14.29 204 Do not on horiba													
1129 3.02 6.38 0.185 10.0 14.29 204	11	26				0.185			14.30	203			
Stabilization of Parameters (stabilization achieved for three consecutive measurements) Time	11	29	3.02		6.38	0.185	10.0		14.29	204			
Stabilization of Parameters (stabilization achieved for three consecutive measurements) Time													
Stabilization of Parameters (stabilization achieved for three consecutive measurements) Time													
Time	*DO not	on horiba	1										
Time													
Time													
FROM TO Water (ft btoc) Storage (Y/N)? (%) (%) (%) (%) (%) (%) (mv)										25-			
FROM TO (ft btoc) Storage (Y/N)? (%) (%) (%) (%) (%) (mv)			•		pН	Conductivity	I urbidity		remperature	URP			
1123	FROM	TO				(%)	(%)		(%)	(mv)			
1126 1129 0.00 0.00 0.0% 6.5% 0.1% 1	1123	1126	` ′		0.02	` '			` '				
Recommended Stabilization: Unit total NA H/- 0.1 Unit H/- 3% Stabilization: (Yes/No) TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE						0.0%			0.1%	1			
Stabilization total NA unit 4/- 3% or +/- 10% if >0.5 mg/L 4/- 3% 4/- 10 mV Stabilization: (Yes/No) TRUE TRUE TRUE TRUE TRUE TRUE Sample Time:	1123	1129	0.00		0.02	0.5%	2.0%		0.1%	1			
Stabilization total NA unit 4/- 3% or +/- 10% if >0.5 mg/L 4/- 3% 4/- 10 mV Stabilization: (Yes/No) TRUE TRUE TRUE TRUE TRUE TRUE Sample Time:													
Stabilization: (Yes/No) TRUE TRUE TRUE TRUE TRUE TRUE TRUE Sample Time: 1130 VOCs, ETPH, PAHs, 8 RCRA Metals, Total cyanide ft btoc feet below top of casing NTU Nephelometric Turbidity Units °C degrees Celsius ml/min milliliters per minute mg/l milligrams per liter mv millivolts			_	NA		+/- 3%			+/- 3%	+/- 10 mv			
Sample Time: VOCs, ETPH, PAHs, 8 RCRA Metals, Total cyanide ft btoc feet below top of casing NTU Nephelometric Turbidity Units °C degrees Celsius ml/min milliliters per minute mg/l milligrams per liter mv millivolts					TRUE	TRUE	TRUE		TRUE	TRUE			
ml/min milliliters per minute mg/l milligrams per liter mv millivolts	Sample 1	 Гіте:	1130		V	/OCs, ETPH, PAHs, 8 RCRA Metal	ls, Total cyanide						
3 3 3 1 1	ft btoc feet below top of casing		-	NTU	'	,							
дологи плиоозелнето рег селитетет пълсти millisermens per centimeter					_	• '		mv	millivolts				
	μο/ΟΠ		morosemiens	por ocumeter	m5/UII	minisennens per centimeter							



Tuesday, December 31, 2024

Attn: Darrick Jones WSP USA 4 Research Dr Suite 204 Shelton, CT 06484

Project ID: BTP

SDG ID: GCS32536

Sample ID#s: CS32536 - CS32538

This laboratory is in compliance with the NELAC requirements of procedures used except where indicated.

This report contains results for the parameters tested, under the sampling conditions described on the Chain Of Custody, as received by the laboratory. This report is incomplete unless all pages indicated in the pagination at the bottom of the page are included.

A scanned version of the COC form accompanies the analytical report and is an exact duplicate of the original.

The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Sincerely yours,

Phyllis/Shiller

Laboratory Director

NELAC - #NY11301 CT Lab Registration #PH-0618 MA Lab Registration #M-CT007 ME Lab Registration #CT-007 NH Lab Registration #213693-A,B NJ Lab Registration #CT-003 NY Lab Registration #11301 PA Lab Registration #68-03530 RI Lab Registration #63 VT Lab Registration #VT11301

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

SDG Comments

December 31, 2024

SDG I.D.: GCS32536

Volatile 8260 analysis:

1,2-Dibromoethane and 1,2-Dibromo-3-chloropropane do not meet GWP criteria, these compounds are analyzed by GC/ECD to achieve this criteria.

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Sample Id Cross Reference

December 31, 2024

SDG I.D.: GCS32536

Project ID: BTP

Client Id	Lab Id	Matrix
MW-01	CS32536	GROUND WATER
MW-02	CS32537	GROUND WATER
MW-04R	CS32538	GROUND WATER

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102

Analysis Report

December 31, 2024

FOR: Attn: Darrick Jones

WSP USA

4 Research Dr Suite 204 Shelton, CT 06484

Sample Information Custody Information Date <u>Time</u> **GROUND WATER** Collected by: MS 12/19/24 12:15 Matrix: **WSP** Received by: Location Code: SR1 12/19/24 17:54

Rush Request: Standard Analyzed by: see "By" below

P.O.#: Laboratory Data

SDG ID: GCS32536

Phoenix ID: CS32536

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference
Falameter	Resuit	FQL	Ullis	Dilution	Date/Time	Бу	Reference
Silver	< 0.001	0.001	mg/L	1	12/26/24	CPP	SW6010D
Arsenic	0.008	0.004	mg/L	1	12/26/24	CPP	SW6010D
Barium	0.399	0.002	mg/L	1	12/26/24	CPP	SW6010D
Cadmium	< 0.001	0.001	mg/L	1	12/26/24	CPP	SW6010D
Chromium	0.016	0.001	mg/L	1	12/26/24	CPP	SW6010D
Mercury	0.0002	0.0002	mg/L	1	12/20/24	ZT	SW7470A
Lead	0.060	0.001	mg/L	1	12/26/24	CPP	SW6010D
Selenium	< 0.010	0.010	mg/L	1	12/26/24	CPP	SW6010D
Total Cyanide	0.020	0.010	mg/L	1	12/24/24	K/A/G	SW9010C/SW9012B
Extraction of ETPH	Completed				12/23/24	Z/MQ	SW3510C/SW3520C
Mercury Digestion	Completed				12/20/24	AK/AK	SW7470A
Semi-Volatile Extraction	Completed				12/24/24	Z/K	SW3520C
Total Metals Digestion	Completed				12/24/24	AG	SW3010A
TPH by GC (Extractable	Products	<u>s)</u>					
Ext. Petroleum H.C. (C9-C36)	1.6	0.076	mg/L	1	12/25/24	JRB	CTETPH
Identification	**		mg/L	1	12/25/24	JRB	CTETPH
QA/QC Surrogates							
% Terphenyl (surr)	61		%	1	12/25/24	JRB	50 - 150 %
<u>Volatiles</u>							
1,1,1,2-Tetrachloroethane	ND	1.0	ug/L	1	12/22/24	MH	SW8260D
1,1,1-Trichloroethane	ND	1.0	ug/L	1	12/22/24	MH	SW8260D
1,1,2,2-Tetrachloroethane	ND	0.50	ug/L	1	12/22/24	MH	SW8260D
1,1,2-Trichloroethane	ND	1.0	ug/L	1	12/22/24	МН	SW8260D
1,1-Dichloroethane	ND	1.0	ug/L	1	12/22/24	MH	SW8260D
1,1-Dichloroethene	ND	1.0	ug/L	1	12/22/24	MH	SW8260D

Client ID. WW-01		5 1. /					
Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference
1,1-Dichloropropene	ND	1.0	ug/L	1	12/22/24	MH	SW8260D
1,2,3-Trichlorobenzene	ND	1.0	ug/L	1	12/22/24	MH	SW8260D
1,2,3-Trichloropropane	ND	1.0	ug/L	1	12/22/24	MH	SW8260D
1,2,4-Trichlorobenzene	ND	1.0	ug/L	1	12/22/24	MH	SW8260D
1,2,4-Trimethylbenzene	5.3	1.0	ug/L	1	12/22/24	MH	SW8260D
1,2-Dibromo-3-chloropropane	ND	0.50	ug/L	1	12/22/24	MH	SW8260D
1,2-Dibromoethane	ND	0.25	ug/L	1	12/22/24	MH	SW8260D
1,2-Dichlorobenzene	ND	1.0	ug/L	1	12/22/24	MH	SW8260D
1,2-Dichloroethane	ND	0.60	ug/L	1	12/22/24	MH	SW8260D
1,2-Dichloropropane	ND	1.0	ug/L	1	12/22/24	МН	SW8260D
1,3,5-Trimethylbenzene	1.0	1.0	ug/L	1	12/22/24	МН	SW8260D
1,3-Dichlorobenzene	ND	1.0	ug/L	1	12/22/24	МН	SW8260D
1,3-Dichloropropane	ND	1.0	ug/L	1	12/22/24	МН	SW8260D
1,4-Dichlorobenzene	ND	1.0	ug/L	1	12/22/24	МН	SW8260D
2,2-Dichloropropane	ND	1.0	ug/L	1	12/22/24	МН	SW8260D
2-Chlorotoluene	ND	1.0	ug/L	1	12/22/24	МН	SW8260D
2-Hexanone	ND	5.0	ug/L	1	12/22/24	МН	SW8260D
2-Isopropyltoluene	ND	1.0	ug/L	1	12/22/24	МН	SW8260D
4-Chlorotoluene	ND	1.0	ug/L	1	12/22/24	МН	SW8260D
4-Methyl-2-pentanone	ND	5.0	ug/L	1	12/22/24	МН	SW8260D
Acetone	ND	25	ug/L	1	12/22/24	МН	SW8260D
Acrylonitrile	ND	0.50	ug/L	1	12/22/24	MH	SW8260D
Benzene	16	0.70	ug/L	1	12/22/24	MH	SW8260D
Bromobenzene	ND	1.0	ug/L	1	12/22/24	MH	SW8260D
Bromochloromethane	ND	1.0	ug/L	1	12/22/24	MH	SW8260D
Bromodichloromethane	ND	0.50	ug/L	1	12/22/24	MH	SW8260D
Bromoform	ND	1.0	ug/L	1	12/22/24	MH	SW8260D
Bromomethane	ND	1.0	ug/L	1	12/22/24	МН	SW8260D
Carbon Disulfide	ND	5.0	ug/L	1	12/22/24	МН	SW8260D
Carbon tetrachloride	ND	1.0	ug/L	1	12/22/24	MH	SW8260D
Chlorobenzene	ND	1.0	ug/L	1	12/22/24	MH	SW8260D
Chloroethane	ND	1.0	ug/L	1	12/22/24	MH	SW8260D
Chloroform	ND	1.0	ug/L	1	12/22/24	MH	SW8260D
Chloromethane	ND	1.0	ug/L	1	12/22/24	MH	SW8260D
	ND	1.0	ug/L	1	12/22/24	MH	SW8260D
cis-1,2-Dichloroethene	ND	0.40	ug/L	1	12/22/24	MH	SW8260D
cis-1,3-Dichloropropene	ND	0.40		1	12/22/24	MH	SW8260D
Dibromochloromethane	ND ND	1.0	ug/L	1	12/22/24		SW8260D
Dibromomethane			ug/L	1	12/22/24	MH	
Dichlorodifluoromethane	ND	1.0	ug/L	1		MH	SW8260D
Ethylbenzene	33 ND	5.0	ug/L	5	12/23/24	MH	SW8260D
Hexachlorobutadiene	ND	0.40	ug/L	1	12/22/24	MH	SW8260D
Isopropylbenzene	8.4	1.0	ug/L	1	12/22/24	MH	SW8260D
m&p-Xylene	1.8	1.0	ug/L	1	12/22/24	MH	SW8260D
Methyl ethyl ketone	ND	5.0	ug/L	1	12/22/24	MH	SW8260D
Methyl t-butyl ether (MTBE)	ND	1.0	ug/L	1	12/22/24	MH	SW8260D
Methylene chloride	ND	1.0	ug/L	1	12/22/24	MH	SW8260D
Naphthalene	440	20	ug/L	20	12/23/24	MH	SW8260D
n-Butylbenzene	ND	1.0	ug/L	1	12/22/24	МН	SW8260D
n-Propylbenzene	ND	1.0	ug/L	1	12/22/24	МН	SW8260D

		RL/		50.0	D . (T)	_	5.
Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference
o-Xylene	6.2	1.0	ug/L	1	12/22/24	MH	SW8260D
p-Isopropyltoluene	1.1	1.0	ug/L	1	12/22/24	MH	SW8260D
sec-Butylbenzene	ND	1.0	ug/L	1	12/22/24	MH	SW8260D
Styrene	ND	1.0	ug/L	1	12/22/24	MH	SW8260D
tert-Butylbenzene	ND	1.0	ug/L	1	12/22/24	MH	SW8260D
Tetrachloroethene	ND	1.0	ug/L	1	12/22/24	MH	SW8260D
Tetrahydrofuran (THF)	ND	2.5	ug/L	1	12/22/24	MH	SW8260D
Toluene	1.2	1.0	ug/L	1	12/22/24	MH	SW8260D
Total Xylenes	8.0	1.0	ug/L	1	12/22/24	MH	SW8260D
trans-1,2-Dichloroethene	ND	1.0	ug/L	1	12/22/24	MH	SW8260D
trans-1,3-Dichloropropene	ND	0.40	ug/L	1	12/22/24	MH	SW8260D
trans-1,4-dichloro-2-butene	ND	5.0	ug/L	1	12/22/24	MH	SW8260D
Trichloroethene	ND	1.0	ug/L	1	12/22/24	MH	SW8260D
Trichlorofluoromethane	ND	1.0	ug/L	1	12/22/24	MH	SW8260D
Trichlorotrifluoroethane	ND	1.0	ug/L	1	12/22/24	МН	SW8260D
Vinyl chloride	ND	1.0	ug/L	1	12/22/24	МН	SW8260D
QA/QC Surrogates							
% 1,2-dichlorobenzene-d4	95		%	1	12/22/24	МН	70 - 130 %
% Bromofluorobenzene	95		%	1	12/22/24	МН	70 - 130 %
% Dibromofluoromethane	93		%	1	12/22/24	МН	70 - 130 %
% Toluene-d8	98		%	1	12/22/24	МН	70 - 130 %
% 1,2-dichlorobenzene-d4 (5x)	94		%	5	12/23/24	МН	70 - 130 %
% Bromofluorobenzene (5x)	97		%	5	12/23/24	МН	70 - 130 %
% Dibromofluoromethane (5x)	93		%	5	12/23/24	МН	70 - 130 %
% Toluene-d8 (5x)	96		%	5	12/23/24	МН	70 - 130 %
% 1,2-dichlorobenzene-d4 (20x)	93		%	20	12/23/24	МН	70 - 130 %
% Bromofluorobenzene (20x)	98		%	20	12/23/24	МН	70 - 130 %
% Dibromofluoromethane (20x)	91		%	20	12/23/24	МН	70 - 130 %
% Toluene-d8 (20x)	97		%	20	12/23/24	МН	70 - 130 %
	•						
Oxygenates & Dioxane							
1,4-Dioxane	ND	40	ug/L	1	12/22/24	HM	SW8260D (OXY)
Diethyl ether	ND	1.0	ug/L	1	12/22/24	HM	SW8260D (OXY)
Ethyl tert-butyl ether	ND	1.0	ug/L	1	12/22/24	HM	SW8260D (OXY)
tert-amyl methyl ether	ND	1.0	ug/L	1	12/22/24	НМ	SW8260D (OXY)
Semivolatiles by SIM, PA	ч						
		0.00	ug/l	1	12/27/24	MR	SW8270E
2-Methylnaphthalene	12	0.09	ug/L	1			
Acenaphthene	52	0.05	ug/L	1	12/27/24	MR	SW8270E
Acenaphthylene	1.3	0.28	ug/L	1	12/26/24	MR	SW8270E (SIM)
Anthracene	5.6	0.47	ug/L	1	12/26/24	MR	SW8270E (SIM)
Benz(a)anthracene	1.9	0.05	ug/L	1	12/26/24	MR	SW8270E (SIM)
Benzo(a)pyrene	1.3	0.19	ug/L	1	12/26/24	MR	SW8270E (SIM)
Benzo(b)fluoranthene	1.2	0.07	ug/L	1	12/26/24	MR	SW8270E (SIM)
Benzo(ghi)perylene	0.82	0.45	ug/L	1	12/26/24	MR	SW8270E (SIM)
Benzo(k)fluoranthene	1.1	0.28	ug/L	1	12/26/24	MR	SW8270E (SIM)
Chrysene	1.6	0.47	ug/L	1	12/26/24	MR	SW8270E (SIM)
Dibenz(a,h)anthracene	0.18	0.09	ug/L	1	12/26/24	MR	SW8270E (SIM)
Fluoranthene	8.8	0.47	ug/L	1	12/26/24	MR	SW8270E (SIM)
Fluorene	40	0.05	ug/L	1	12/27/24	MR	SW8270E

Project ID: BTP Phoenix I.D.: CS32536

Client ID: MW-01

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	By	Reference
Indeno(1,2,3-cd)pyrene	0.79	0.09	ug/L	1	12/26/24	MR	SW8270E (SIM)
Naphthalene	240	0.47	ug/L	5	12/27/24	MR	SW8270E
Phenanthrene	23	0.05	ug/L	1	12/27/24	MR	SW8270E
Pyrene	6.3	0.47	ug/L	1	12/26/24	MR	SW8270E (SIM)
QA/QC Surrogates							
% 2-Fluorobiphenyl	66		%	1	12/27/24	MR	30 - 130 %
% Nitrobenzene-d5	70		%	1	12/27/24	MR	30 - 130 %
% Terphenyl-d14	56		%	1	12/27/24	MR	30 - 130 %
% 2-Fluorobiphenyl (5x)	67		%	5	12/27/24	MR	30 - 130 %
% Nitrobenzene-d5 (5x)	63		%	5	12/27/24	MR	30 - 130 %
% Terphenyl-d14 (5x)	56		%	5	12/27/24	MR	30 - 130 %

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level

QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

TPH Comment:

**Petroleum hydrocarbon chromatogram contains a multicomponent hydrocarbon distribution in the range of C9 to C36. The sample was quantitated against a C9-C36 alkane hydrocarbon standard.

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Phyllis Shiller, Laboratory Director

December 31, 2024

Reviewed and Released by: Ethan Lee, Project Manager

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102

Analysis Report

December 31, 2024

FOR: Attn: Darrick Jones

WSP USA

4 Research Dr Suite 204 Shelton, CT 06484

Sample Information Custody Information Time Date GROUND WATER Collected by: MS 12/19/24 13:15 Matrix: **WSP** Received by: Location Code: SR1 12/19/24 17:54

Rush Request: Standard Analyzed by: see "By" below

P.O.#: Laboratory Data

SDG ID: GCS32536

Phoenix ID: CS32537

		RL/					
Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference
Silver	< 0.001	0.001	mg/L	1	12/26/24	CPP	SW6010D
Arsenic	< 0.004	0.004	mg/L	1	12/26/24	CPP	SW6010D
Barium	0.029	0.002	mg/L	1	12/26/24	CPP	SW6010D
Cadmium	< 0.001	0.001	mg/L	1	12/26/24	CPP	SW6010D
Chromium	< 0.001	0.001	mg/L	1	12/26/24	CPP	SW6010D
Mercury	< 0.0002	0.0002	mg/L	1	12/20/24	ZT	SW7470A
Lead	< 0.001	0.001	mg/L	1	12/26/24	CPP	SW6010D
Selenium	< 0.010	0.010	mg/L	1	12/26/24	CPP	SW6010D
Total Cyanide	< 0.010	0.010	mg/L	1	12/24/24	K/A/G	SW9010C/SW9012B
Extraction of ETPH	Completed				12/23/24	Z/MQ	SW3510C/SW3520C
Mercury Digestion	Completed				12/20/24	AK/AK	SW7470A
Semi-Volatile Extraction	Completed				12/24/24	Z/K	SW3520C
Total Metals Digestion	Completed				12/24/24	AG	SW3010A
TPH by GC (Extractable	Products	<u>s)</u>					
Ext. Petroleum H.C. (C9-C36)	ND	0.071	mg/L	1	12/25/24	JRB	CTETPH
Identification	ND		mg/L	1	12/25/24	JRB	CTETPH
QA/QC Surrogates							
% Terphenyl (surr)	55		%	1	12/25/24	JRB	50 - 150 %
<u>Volatiles</u>							
1,1,1,2-Tetrachloroethane	ND	1.0	ug/L	1	12/23/24	MH	SW8260D
1,1,1-Trichloroethane	ND	1.0	ug/L	1	12/23/24	МН	SW8260D
1,1,2,2-Tetrachloroethane	ND	0.50	ug/L	1	12/23/24	МН	SW8260D
1,1,2-Trichloroethane	ND	1.0	ug/L	1	12/23/24	МН	SW8260D
1,1-Dichloroethane	ND	1.0	ug/L	1	12/23/24	МН	SW8260D
1,1-Dichloroethene	ND	1.0	ug/L	1	12/23/24	МН	SW8260D

Client ID. WW-02		51.7					
Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference
1,1-Dichloropropene	ND	1.0	ug/L	1	12/23/24	MH	SW8260D
1,2,3-Trichlorobenzene	ND	1.0	ug/L	1	12/23/24	MH	SW8260D
1,2,3-Trichloropropane	ND	1.0	ug/L	1	12/23/24	MH	SW8260D
1,2,4-Trichlorobenzene	ND	1.0	ug/L	1	12/23/24	MH	SW8260D
1,2,4-Trimethylbenzene	ND	1.0	ug/L	1	12/23/24	MH	SW8260D
1,2-Dibromo-3-chloropropane	ND	0.50	ug/L	1	12/23/24	MH	SW8260D
1,2-Dibromoethane	ND	0.25	ug/L	1	12/23/24	MH	SW8260D
1,2-Dichlorobenzene	ND	1.0	ug/L	1	12/23/24	MH	SW8260D
1,2-Dichloroethane	ND	0.60	ug/L	1	12/23/24	MH	SW8260D
1,2-Dichloropropane	ND	1.0	ug/L	1	12/23/24	MH	SW8260D
1,3,5-Trimethylbenzene	ND	1.0	ug/L	1	12/23/24	MH	SW8260D
1,3-Dichlorobenzene	ND	1.0	ug/L	1	12/23/24	MH	SW8260D
1,3-Dichloropropane	ND	1.0	ug/L	1	12/23/24	МН	SW8260D
1,4-Dichlorobenzene	ND	1.0	ug/L	1	12/23/24	МН	SW8260D
2,2-Dichloropropane	ND	1.0	ug/L	1	12/23/24	МН	SW8260D
2-Chlorotoluene	ND	1.0	ug/L	1	12/23/24	МН	SW8260D
2-Hexanone	ND	5.0	ug/L	1	12/23/24	МН	SW8260D
2-Isopropyltoluene	ND	1.0	ug/L	1	12/23/24	МН	SW8260D
4-Chlorotoluene	ND	1.0	ug/L	1	12/23/24	МН	SW8260D
4-Methyl-2-pentanone	ND	5.0	ug/L	1	12/23/24	МН	SW8260D
Acetone	ND	25	ug/L	1	12/23/24	МН	SW8260D
Acrylonitrile	ND	0.50	ug/L	1	12/23/24	МН	SW8260D
Benzene	ND	0.70	ug/L	1	12/23/24	МН	SW8260D
Bromobenzene	ND	1.0	ug/L	1	12/23/24	МН	SW8260D
Bromochloromethane	ND	1.0	ug/L	1	12/23/24	МН	SW8260D
Bromodichloromethane	ND	0.50	ug/L	1	12/23/24	МН	SW8260D
Bromoform	ND	1.0	ug/L	1	12/23/24	МН	SW8260D
Bromomethane	ND	1.0	ug/L	1	12/23/24	МН	SW8260D
Carbon Disulfide	ND	5.0	ug/L	1	12/23/24	МН	SW8260D
Carbon tetrachloride	ND	1.0	ug/L	1	12/23/24	MH	SW8260D
Chlorobenzene	ND	1.0	ug/L	1	12/23/24	MH	SW8260D
Chloroethane	ND	1.0	ug/L	1	12/23/24	МН	SW8260D
Chloroform	ND	1.0	ug/L	1	12/23/24	MH	SW8260D
Chloromethane	ND	1.0	ug/L	1	12/23/24	МН	SW8260D
cis-1,2-Dichloroethene	ND	1.0	ug/L	1	12/23/24	MH	SW8260D
cis-1,3-Dichloropropene	ND	0.40	ug/L	1	12/23/24	MH	SW8260D
Dibromochloromethane	ND	0.50	ug/L	1	12/23/24	MH	SW8260D
Dibromomethane	ND	1.0	ug/L	1	12/23/24	MH	SW8260D
Dichlorodifluoromethane	ND	1.0	ug/L	1	12/23/24	MH	SW8260D
	ND	1.0	ug/L	1	12/23/24	MH	SW8260D
Ethylbenzene Hexachlorobutadiene	ND	0.40	ug/L	1	12/23/24	MH	SW8260D
	ND	1.0	ug/L	1	12/23/24	MH	SW8260D
Isopropylbenzene	ND	1.0	ug/L	1	12/23/24	MH	SW8260D
m&p-Xylene	ND ND	5.0		1	12/23/24	MH	SW8260D SW8260D
Methyl t butyl other (MTRE)			ug/L				
Methyl t-butyl ether (MTBE)	ND	1.0	ug/L	1	12/23/24	MH	SW8260D
Methylene chloride	ND	1.0	ug/L	1	12/23/24	MH	SW8260D
Naphthalene	ND	1.0	ug/L	1	12/23/24	MH	SW8260D
n-Butylbenzene	ND	1.0	ug/L	1	12/23/24	MH	SW8260D
n-Propylbenzene	ND	1.0	ug/L	1	12/23/24	МН	SW8260D

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference
o-Xylene	ND	1.0	ug/L	1	12/23/24	МН	SW8260D
p-Isopropyltoluene	ND	1.0	ug/L	1	12/23/24	MH	SW8260D
sec-Butylbenzene	ND	1.0	ug/L	1	12/23/24	MH	SW8260D
Styrene	ND	1.0	ug/L	1	12/23/24	MH	SW8260D
tert-Butylbenzene	ND	1.0	ug/L	1	12/23/24	MH	SW8260D
Tetrachloroethene	ND	1.0	ug/L	1	12/23/24	MH	SW8260D
Tetrahydrofuran (THF)	ND	2.5	ug/L	1	12/23/24	MH	SW8260D
Toluene	ND	1.0	ug/L	1	12/23/24	MH	SW8260D
Total Xylenes	ND	1.0	ug/L	1	12/23/24	MH	SW8260D
trans-1,2-Dichloroethene	ND	1.0	ug/L	1	12/23/24	MH	SW8260D
trans-1,3-Dichloropropene	ND	0.40	ug/L	1	12/23/24	MH	SW8260D
trans-1,4-dichloro-2-butene	ND	5.0	ug/L	1	12/23/24	MH	SW8260D
Trichloroethene	ND	1.0	ug/L	1	12/23/24	MH	SW8260D
Trichlorofluoromethane	ND	1.0	ug/L	1	12/23/24	MH	SW8260D
Trichlorotrifluoroethane	ND	1.0	ug/L	1	12/23/24	МН	SW8260D
Vinyl chloride	ND	1.0	ug/L	1	12/23/24	МН	SW8260D
QA/QC Surrogates							
% 1,2-dichlorobenzene-d4	93		%	1	12/23/24	МН	70 - 130 %
% Bromofluorobenzene	98		%	1	12/23/24	МН	70 - 130 %
% Dibromofluoromethane	89		%	1	12/23/24	МН	70 - 130 %
% Toluene-d8	94		%	1	12/23/24	МН	70 - 130 %
Oxygenates & Dioxane							
1,4-Dioxane	ND	40	ug/L	1	12/23/24	МН	SW8260D (OXY)
Diethyl ether	ND	1.0	ug/L	1	12/23/24	МН	SW8260D (OXY)
Ethyl tert-butyl ether	ND	1.0	ug/L	1	12/23/24	МН	SW8260D (OXY)
tert-amyl methyl ether	ND	1.0	ug/L	1	12/23/24	МН	SW8260D (OXY)
Semivolatiles by SIM, PA	AΗ						
2-Methylnaphthalene	ND	0.50	ug/L	1	12/26/24	KCA	SW8270E (SIM)
Acenaphthene	ND	0.50	ug/L	1	12/26/24	KCA	SW8270E (SIM)
Acenaphthylene	ND	0.30	ug/L	1	12/26/24	KCA	SW8270E (SIM)
Anthracene	ND	0.50	ug/L	1	12/26/24	KCA	SW8270E (SIM)
Benz(a)anthracene	ND	0.05	ug/L	1	12/26/24		SW8270E (SIM)
Benzo(a)pyrene	ND	0.20	ug/L	1	12/26/24	KCA	SW8270E (SIM)
Benzo(b)fluoranthene	ND	0.07	ug/L	1	12/26/24	KCA	SW8270E (SIM)
Benzo(ghi)perylene	ND	0.48	ug/L	1	12/26/24	KCA	SW8270E (SIM)
Benzo(k)fluoranthene	ND	0.30	ug/L	1	12/26/24	KCA	SW8270E (SIM)
Chrysene	ND	0.50	ug/L	1	12/26/24	KCA	SW8270E (SIM)
Dibenz(a,h)anthracene	ND	0.10	ug/L	1	12/26/24	KCA	SW8270E (SIM)
Fluoranthene	ND	0.50	ug/L	1	12/26/24	KCA	SW8270E (SIM)
Fluorene	ND	0.50	ug/L	1	12/26/24	KCA	SW8270E (SIM)
Indeno(1,2,3-cd)pyrene	ND	0.10	ug/L	1	12/26/24	KCA	SW8270E (SIM)
Naphthalene	ND	0.50	ug/L	1	12/26/24	KCA	SW8270E (SIM)
-	ND	0.06	ug/L	1	12/26/24	KCA	SW8270E (SIM)
Phenanthrene	ND	0.50	_	1	12/26/24	KCA	SW8270E (SIM)
Pyrene ON/OC Surrogatos	טאו	0.50	ug/L	1	12/20/24	NOA	SVVOZIOL (SIIVI)
QA/QC Surrogates	67		%	1	12/26/24	KC A	30 - 130 %
% 2-Fluorobiphenyl			%				
% Nitrobenzene-d5	73 72			1	12/26/24	KCA	
% Terphenyl-d14	72		%	1	12/26/24	NUA	30 - 130 %

Project ID: BTP Phoenix I.D.: CS32537

Client ID: MW-02 RL/

Parameter Result PQL Units Dilution Date/Time By Reference

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Phyllis Shiller, Laboratory Director

December 31, 2024

Reviewed and Released by: Ethan Lee, Project Manager

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102

Analysis Report

December 31, 2024

FOR: Attn: Darrick Jones

WSP USA

4 Research Dr Suite 204 Shelton, CT 06484

Sample Information

Matrix: GROUND WATER

Location Code: WSP

Rush Request: Standard

P.O.#:

Custody InformationDateTimeCollected by:MS12/19/2411:30Received by:SR112/19/2417:54

Analyzed by: see "By" below

Laboratory Data

SDG ID: GCS32536

Phoenix ID: CS32538

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	D.,	Reference
Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference
Silver	< 0.001	0.001	mg/L	1	12/26/24	CPP	SW6010D
Arsenic	< 0.004	0.004	mg/L	1	12/26/24	CPP	SW6010D
Barium	0.016	0.002	mg/L	1	12/26/24	CPP	SW6010D
Cadmium	< 0.001	0.001	mg/L	1	12/26/24	CPP	SW6010D
Chromium	0.001	0.001	mg/L	1	12/26/24	CPP	SW6010D
Mercury	< 0.0002	0.0002	mg/L	1	12/20/24	ZT	SW7470A
Lead	< 0.001	0.001	mg/L	1	12/26/24	CPP	SW6010D
Selenium	< 0.010	0.010	mg/L	1	12/26/24	CPP	SW6010D
Total Cyanide	< 0.010	0.010	mg/L	1	12/24/24	K/A/G	SW9010C/SW9012B
Extraction of ETPH	Completed				12/23/24	Z/MQ	SW3510C/SW3520C
Mercury Digestion	Completed				12/20/24	AK/AK	SW7470A
Semi-Volatile Extraction	Completed				12/24/24	Z/K	SW3520C
Total Metals Digestion	Completed				12/24/24	AG	SW3010A
TPH by GC (Extractable	e Products	<u>s)</u>					
Ext. Petroleum H.C. (C9-C36)	ND	0.067	mg/L	1	12/25/24	JRB	CTETPH
Identification	ND		mg/L	1	12/25/24	JRB	CTETPH
QA/QC Surrogates							
% Terphenyl (surr)	53		%	1	12/25/24	JRB	50 - 150 %
<u>Volatiles</u>							
1,1,1,2-Tetrachloroethane	ND	1.0	ug/L	1	12/23/24	MH	SW8260D
1,1,1-Trichloroethane	ND	1.0	ug/L	1	12/23/24	MH	SW8260D
1,1,2,2-Tetrachloroethane	ND	0.50	ug/L	1	12/23/24	MH	SW8260D
1,1,2-Trichloroethane	ND	1.0	ug/L	1	12/23/24	MH	SW8260D
1,1-Dichloroethane	ND	1.0	ug/L	1	12/23/24	MH	SW8260D
1,1-Dichloroethene	ND	1.0	ug/L	1	12/23/24	МН	SW8260D

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference
1,1-Dichloropropene	ND	1.0	ug/L	1	12/23/24	МН	SW8260D
1,2,3-Trichlorobenzene	ND	1.0	ug/L	1	12/23/24	МН	SW8260D
1,2,3-Trichloropropane	ND	1.0	ug/L	1	12/23/24	MH	SW8260D
1,2,4-Trichlorobenzene	ND	1.0	ug/L	1	12/23/24	MH	SW8260D
1,2,4-Trimethylbenzene	ND	1.0	ug/L	1	12/23/24	MH	SW8260D
1,2-Dibromo-3-chloropropane	ND	0.50	ug/L	1	12/23/24	MH	SW8260D
1,2-Dibromoethane	ND	0.25	ug/L	1	12/23/24	MH	SW8260D
1,2-Dichlorobenzene	ND	1.0	ug/L	1	12/23/24	MH	SW8260D
1,2-Dichloroethane	ND	0.60	ug/L	1	12/23/24	MH	SW8260D
1,2-Dichloropropane	ND	1.0	ug/L	1	12/23/24	MH	SW8260D
1,3,5-Trimethylbenzene	ND	1.0	ug/L	1	12/23/24	MH	SW8260D
1,3-Dichlorobenzene	ND	1.0	ug/L	1	12/23/24	MH	SW8260D
1,3-Dichloropropane	ND	1.0	ug/L	1	12/23/24	MH	SW8260D
1,4-Dichlorobenzene	ND	1.0	ug/L	1	12/23/24	MH	SW8260D
2,2-Dichloropropane	ND	1.0	ug/L	1	12/23/24	MH	SW8260D
2-Chlorotoluene	ND	1.0	ug/L	1	12/23/24	MH	SW8260D
2-Hexanone	ND	5.0	ug/L	1	12/23/24	MH	SW8260D
2-Isopropyltoluene	ND	1.0	ug/L	1	12/23/24	MH	SW8260D
4-Chlorotoluene	ND	1.0	ug/L	1	12/23/24	MH	SW8260D
4-Methyl-2-pentanone	ND	5.0	ug/L	1	12/23/24	MH	SW8260D
Acetone	ND	25	ug/L	1	12/23/24	МН	SW8260D
Acrylonitrile	ND	0.50	ug/L	1	12/23/24	МН	SW8260D
Benzene	ND	0.70	ug/L	1	12/23/24	МН	SW8260D
Bromobenzene	ND	1.0	ug/L	1	12/23/24	MH	SW8260D
Bromochloromethane	ND	1.0	ug/L	1	12/23/24	MH	SW8260D
Bromodichloromethane	ND	0.50	ug/L	1	12/23/24	MH	SW8260D
Bromoform	ND	1.0	ug/L	1	12/23/24	MH	SW8260D
Bromomethane	ND	1.0	ug/L	1	12/23/24	MH	SW8260D
Carbon Disulfide	ND	5.0	ug/L	1	12/23/24	MH	SW8260D
Carbon tetrachloride	ND	1.0	ug/L	1	12/23/24	MH	SW8260D
Chlorobenzene	ND	1.0	ug/L	1	12/23/24	MH	SW8260D
Chloroethane	ND	1.0	ug/L	1	12/23/24	MH	SW8260D
Chloroform	ND	1.0	ug/L	1	12/23/24	MH	SW8260D
Chloromethane	ND	1.0	ug/L	1	12/23/24	MH	SW8260D
cis-1,2-Dichloroethene	ND	1.0	ug/L	1	12/23/24	MH	SW8260D
cis-1,3-Dichloropropene	ND	0.40	ug/L	1	12/23/24	MH	SW8260D
Dibromochloromethane	ND	0.50	ug/L	1	12/23/24	MH	SW8260D
Dibromomethane	ND	1.0	ug/L	1	12/23/24	MH	SW8260D
Dichlorodifluoromethane	ND	1.0	ug/L	1	12/23/24	MH	SW8260D
Ethylbenzene	ND	1.0	ug/L	1	12/23/24	MH	SW8260D
Hexachlorobutadiene	ND	0.40	ug/L	1	12/23/24	MH	SW8260D
Isopropylbenzene	ND	1.0	ug/L	1	12/23/24	MH	SW8260D
m&p-Xylene	ND	1.0	ug/L	1	12/23/24	МН	SW8260D
Methyl ethyl ketone	ND	5.0	ug/L	1	12/23/24	МН	SW8260D
Methyl t-butyl ether (MTBE)	ND	1.0	ug/L	1	12/23/24	МН	SW8260D
Methylene chloride	ND	1.0	ug/L	1	12/23/24	МН	SW8260D
Naphthalene	ND	1.0	ug/L	1	12/23/24	МН	SW8260D
n-Butylbenzene	ND	1.0	ug/L	1	12/23/24	МН	SW8260D
n-Propylbenzene	ND	1.0	ug/L	1	12/23/24	МН	SW8260D

Client ID: MW-04R

Client ID. WWW-04K		D. /					
Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference
o-Xylene	ND	1.0	ug/L	1	12/23/24	МН	SW8260D
p-Isopropyltoluene	ND	1.0	ug/L	1	12/23/24	МН	SW8260D
sec-Butylbenzene	ND	1.0	ug/L	1	12/23/24	MH	SW8260D
Styrene	ND	1.0	ug/L	1	12/23/24	МН	SW8260D
tert-Butylbenzene	ND	1.0	ug/L	1	12/23/24	МН	SW8260D
Tetrachloroethene	ND	1.0	ug/L	1	12/23/24	МН	SW8260D
Tetrahydrofuran (THF)	ND	2.5	ug/L	1	12/23/24	МН	SW8260D
Toluene	ND	1.0	ug/L	1	12/23/24	MH	SW8260D
Total Xylenes	ND	1.0	ug/L	1	12/23/24	МН	SW8260D
trans-1,2-Dichloroethene	ND	1.0	ug/L	1	12/23/24	МН	SW8260D
trans-1,3-Dichloropropene	ND	0.40	ug/L	1	12/23/24	МН	SW8260D
trans-1,4-dichloro-2-butene	ND	5.0	ug/L	1	12/23/24	МН	SW8260D
Trichloroethene	ND	1.0	ug/L	1	12/23/24	МН	SW8260D
Trichlorofluoromethane	ND	1.0	ug/L	1	12/23/24	МН	SW8260D
Trichlorotrifluoroethane	ND	1.0	ug/L	1	12/23/24	МН	SW8260D
Vinyl chloride	ND	1.0	ug/L	1	12/23/24	МН	SW8260D
QA/QC Surrogates			_				
% 1,2-dichlorobenzene-d4	94		%	1	12/23/24	МН	70 - 130 %
% Bromofluorobenzene	98		%	1	12/23/24	МН	70 - 130 %
% Dibromofluoromethane	87		%	1	12/23/24	МН	70 - 130 %
% Toluene-d8	96		%	1	12/23/24	МН	70 - 130 %
Oxygenates & Dioxane			_				
1,4-Dioxane	ND	40	ug/L	1	12/23/24	МН	SW8260D (OXY)
Diethyl ether	ND	1.0	ug/L	1	12/23/24	MH	SW8260D (OXY)
Ethyl tert-butyl ether	ND	1.0	ug/L	1	12/23/24	МН	SW8260D (OXY)
tert-amyl methyl ether	ND	1.0	ug/L	1	12/23/24	MH	SW8260D (OXY)
Semivolatiles by SIM, PA	<u> </u>						
2-Methylnaphthalene	ND	0.48	ug/L	1	12/26/24	KCA	SW8270E (SIM)
Acenaphthene	ND	0.48	ug/L	1	12/26/24	KCA	SW8270E (SIM)
Acenaphthylene	ND	0.29	ug/L	1	12/26/24	KCA	SW8270E (SIM)
Anthracene	ND	0.48	ug/L	1	12/26/24	KCA	SW8270E (SIM)
Benz(a)anthracene	ND	0.05	ug/L	1	12/26/24	KCA	SW8270E (SIM)
Benzo(a)pyrene	ND	0.19	ug/L	1	12/26/24	KCA	SW8270E (SIM)
Benzo(b)fluoranthene	ND	0.07	ug/L	1	12/26/24	KCA	SW8270E (SIM)
Benzo(ghi)perylene	ND	0.46	ug/L	1	12/26/24	KCA	SW8270E (SIM)
Benzo(k)fluoranthene	ND	0.29	ug/L	1	12/26/24	KCA	SW8270E (SIM)
Chrysene	ND	0.48	ug/L	1	12/26/24	KCA	SW8270E (SIM)
Dibenz(a,h)anthracene	ND	0.10	ug/L	1	12/26/24	KCA	SW8270E (SIM)
Fluoranthene	ND	0.48	ug/L	1	12/26/24	KCA	SW8270E (SIM)
Fluorene	ND	0.48	ug/L	1	12/26/24	KCA	SW8270E (SIM)
Indeno(1,2,3-cd)pyrene	ND	0.10	ug/L	1	12/26/24	KCA	SW8270E (SIM)
Naphthalene	ND	0.48	ug/L	1	12/26/24	KCA	SW8270E (SIM)
Phenanthrene	ND	0.06	ug/L	1	12/26/24	KCA	SW8270E (SIM)
Pyrene	ND	0.48	ug/L	1	12/26/24	KCA	SW8270E (SIM)
QA/QC Surrogates			J				, ,
% 2-Fluorobiphenyl	65		%	1	12/26/24	KCA	30 - 130 %
% Nitrobenzene-d5	72		%	1	12/26/24		30 - 130 %
% Terphenyl-d14	64		%	1	12/26/24		30 - 130 %

Project ID: BTP Phoenix I.D.: CS32538

Client ID: MW-04R

RL/

Parameter Result PQL Units Dilution Date/Time By Reference

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Phyllis Shiller, Laboratory Director

December 31, 2024

Reviewed and Released by: Ethan Lee, Project Manager

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102

QA/QC Report

acceptance range 75-125%.

December 31, 2024

QA/QC Data

SDG I.D.: GCS32536

Parameter	Blank	Blk RL	Sample Result	Dup Result	Dup RPD	LCS %	LCSD %	LCS RPD	MS %	MSD %	MS RPD	% Rec Limits	% RPD Limits
QA/QC Batch 763523 (mg/L), C	C Samp	ole No: (CS31989	(CS325	36, CS	32537,	CS3253	8)					
Mercury - Water Comment:	BRL	0.0002	<0.0002	<0.0002	NC	116			99.9			80 - 120	20
Additional Mercury Criteria: LCS a acceptance range is 75-125% for					eous and	d for soil	s the acc	eptance	range is	s set by v	vendor I	imits. MS	5
QA/QC Batch 764108 (mg/L), C	C Samp	ole No: (CS32662	(CS325	36, CS	32537,	CS3253	8)					
ICP Metals - Aqueous													
Arsenic	BRL	0.004	< 0.004	< 0.004	NC	103	103	0.0	105			80 - 120	20
Barium	BRL	0.002	0.011	0.011	0	104	103	1.0	104			80 - 120	20
Cadmium	BRL	0.001	< 0.001	< 0.001	NC	104	106	1.9	105			80 - 120	20
Chromium	BRL	0.001	< 0.001	< 0.001	NC	104	105	1.0	105			80 - 120	20
Lead	BRL	0.001	< 0.001	< 0.001	NC	104	104	0.0	103			80 - 120	20
Selenium	BRL	0.010	< 0.010	< 0.010	NC	101	102	1.0	101			80 - 120	20
Silver	BRL	0.001	< 0.001	< 0.001	NC	100	101	1.0	103			80 - 120	20
Comment:													
Additional Criteria: LCS acceptance	ce range	is 80-120	% for aqu	eous and	for soils	the acc	eptance	range is	set by v	endor lir	nits. M	S	

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102

QA/QC Report

December 31, 2024

QA/QC Data

SDG I.D.: GCS32536

Parameter	Blank	Blk RL	Sample Result	Dup Result	Dup RPD	LCS %	LCSD %	LCS RPD	MS %	MSD %	MS RPD	% Rec Limits	% RPD Limits	
QA/QC Batch 763917 (mg/L),	QC Samp	ole No: (CS32537	(CS325	36, CS	32537,	CS3253	8)						
Total Cyanide	BRL	0.010	< 0.010	< 0.010	NC	100	103	3.0	111			90 - 110	20	m
Comment:														
Additional: MS acceptance range	e is 75-125	%.												

m = This parameter is outside laboratory MS/MSD specified recovery limits.

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102

QA/QC Report

Comment:

December 31, 2024

QA/QC Data

SDG I.D.: GCS32536

Parameter	Blank	Blk RL	LCS %	LCSD %	LCS RPD	MS %	MSD %	MS RPD	% Rec Limits	% RPD Limits
QA/QC Batch 763916 (mg/L),	QC Samp	ole No: CS31672 (CS3	32536, CS32537,	CS3253	38)					
TPH by GC (Extractable	Produc	cts) - Ground Wate	<u>er</u>							
Ext. Petroleum H.C. (C9-C36)	ND	0.10	100	96	4.1				60 - 120	20
% Terphenyl (surr)	69	%	73	72	1.4				50 - 150	20

A LCS and LCS Duplicate were performed instead of a matrix spike and matrix spike duplicate.

Additional surrogate criteria: LCS acceptance range is 60-120% MS acceptance range 50-150%. The ETPH/DRO LCS has been normalized based on the alkane calibration.

QA/QC Batch 764116 (ug/L), QC Sample No: CS33408 (CS32536, CS32537, CS32538)

Semivolatiles by SIM, PAH - Ground Water

Schrivolatiles by Silvi,	MI OIL	Julia VVatci						
2-Methylnaphthalene	ND	0.50	66	65	1.5	30 - 130	20	
Acenaphthene	ND	0.50	77	74	4.0	30 - 130	20	
Acenaphthylene	ND	0.30	69	67	2.9	30 - 130	20	
Anthracene	ND	0.50	82	79	3.7	30 - 130	20	
Benz(a)anthracene	ND	0.02	83	78	6.2	30 - 130	20	
Benzo(a)pyrene	ND	0.02	79	76	3.9	30 - 130	20	
Benzo(b)fluoranthene	ND	0.02	77	72	6.7	30 - 130	20	
Benzo(ghi)perylene	ND	0.48	84	79	6.1	30 - 130	20	
Benzo(k)fluoranthene	ND	0.02	82	79	3.7	30 - 130	20	
Chrysene	ND	0.02	80	76	5.1	30 - 130	20	
Dibenz(a,h)anthracene	ND	0.10	87	82	5.9	30 - 130	20	
Fluoranthene	ND	0.50	79	76	3.9	30 - 130	20	
Fluorene	ND	0.50	78	75	3.9	30 - 130	20	
Indeno(1,2,3-cd)pyrene	ND	0.02	79	74	6.5	30 - 130	20	
Naphthalene	ND	0.50	61	63	3.2	30 - 130	20	
Phenanthrene	ND	0.06	74	71	4.1	30 - 130	20	
Pyrene	ND	0.50	81	78	3.8	30 - 130	20	
% 2-Fluorobiphenyl	64	%	69	65	6.0	30 - 130	20	
% Nitrobenzene-d5	64	%	62	63	1.6	30 - 130	20	
% Terphenyl-d14	72	%	72	70	2.8	30 - 130	20	
Comment:								

A LCS and LCS Duplicate were performed instead of a matrix spike and matrix spike duplicate.

Additional 8270 criteria:20% of compounds can be outside of acceptance criteria as long as recovery is at least 10%. (Acid surrogates acceptance range for aqueous samples: 15-110%, for soils 30-130%)

QA/QC Batch 763881 (ug/L), QC Sample No: CS32688 (CS32536)

Volatiles - Ground Water

1,1,1,2-Tetrachloroethane	ND	1.0	89	90	1.1	70 - 130	20
1,1,1-Trichloroethane	ND	1.0	100	96	4.1	70 - 130	20
1,1,2,2-Tetrachloroethane	ND	0.50	90	99	9.5	70 - 130	20
1,1,2-Trichloroethane	ND	1.0	85	94	10.1	70 - 130	20
1,1-Dichloroethane	ND	1.0	104	102	1.9	70 - 130	20

SDG I.D.: GCS32536

Parameter	Blank	Blk RL	LCS %	LCSD %	LCS RPD	MS %	MSD %	MS RPD	% Rec Limits	% RPD Limits
1,1-Dichloroethene	ND	1.0	100	95	5.1				70 - 130	20
1,1-Dichloropropene	ND	1.0	108	105	2.8				70 - 130	20
1,2,3-Trichlorobenzene	ND	1.0	86	93	7.8				70 - 130	20
1,2,3-Trichloropropane	ND	1.0	92	96	4.3				70 - 130	20
1,2,4-Trichlorobenzene	ND	1.0	90	92	2.2				70 - 130	20
1,2,4-Trimethylbenzene	ND	1.0	107	103	3.8				70 - 130	20
1,2-Dibromo-3-chloropropane	ND	1.0	82	93	12.6				70 - 130	20
1,2-Dibromoethane	ND	1.0	90	96	6.5				70 - 130	20
1,2-Dichlorobenzene	ND	1.0	96	97	1.0				70 - 130	20
1,2-Dichloroethane	ND	1.0	91	100	9.4				70 - 130	20
1,2-Dichloropropane	ND	1.0	96	99	3.1				70 - 130	20
1,3,5-Trimethylbenzene	ND	1.0	109	102	6.6				70 - 130	20
1,3-Dichlorobenzene	ND	1.0	99	97	2.0				70 - 130	20
1,3-Dichloropropane	ND	1.0	92	96	4.3				70 - 130	20
1,4-Dichlorobenzene	ND	1.0	100	97	3.0				70 - 130	20
1,4-dioxane	ND	100	93	91	2.2				70 - 130	20
2,2-Dichloropropane	ND	1.0	104	104	0.0				70 - 130	20
2-Chlorotoluene	ND	1.0	106	101	4.8				70 - 130	20
2-Hexanone	ND	5.0	79	90	13.0				70 - 130	20
2-Isopropyltoluene	ND	1.0	109	105	3.7				70 - 130	20
4-Chlorotoluene	ND	1.0	101	99	2.0				70 - 130	20
4-Methyl-2-pentanone	ND	5.0	72	86	17.7				70 - 130	20
Acetone	ND	5.0	72	82	13.0				70 - 130	20
Acrylonitrile	ND	5.0	71	81	13.2				70 - 130	20
Benzene	ND	0.70	105	105	0.0				70 - 130	20
Bromobenzene	ND	1.0	99	98	1.0				70 - 130	20
Bromochloromethane	ND	1.0	81	87	7.1				70 - 130	20
Bromodichloromethane	ND	0.50	90	96	6.5				70 - 130	20
Bromoform	ND	1.0	76	83	8.8				70 - 130	20
Bromomethane	ND	1.0	99	99	0.0				70 - 130	20
Carbon Disulfide	ND	1.0	104	100	3.9				70 - 130	20
Carbon tetrachloride	ND	1.0	94	92	2.2				70 - 130	20
Chlorobenzene	ND	1.0	98	96	2.1				70 - 130	20
Chloroethane	ND	1.0	117	112	4.4				70 - 130	20
Chloroform	ND	1.0	97	98	1.0				70 - 130	20
Chloromethane	ND	1.0	114	109	4.5				70 - 130	20
cis-1,2-Dichloroethene	ND	1.0	100	100	0.0				70 - 130	20
cis-1,3-Dichloropropene	ND	0.40	90	96	6.5				70 - 130	20
Dibromochloromethane	ND	0.50	88	94	6.6				70 - 130	20
Dibromomethane	ND	1.0	87	94	7.7				70 - 130	20
Dichlorodifluoromethane	ND	1.0	110	103	6.6				70 - 130	20
Ethyl ether	ND	1.0	80	91	12.9				70 - 130	20
Ethyl tert-butyl ether	ND	1.0	83	94	12.4				70 - 130	20
Hexachlorobutadiene	ND	0.40	90	89	1.1				70 - 130	20
Isopropylbenzene	ND	1.0	111	103	7.5				70 - 130	20
m&p-Xylene	ND	1.0	103	97	6.0				70 - 130	20
Methyl ethyl ketone	ND	5.0	74	86	15.0				70 - 130	20
Methyl t-butyl ether (MTBE)	ND	1.0	78	88	12.0				70 - 130	20
Methylene chloride	ND	1.0	91	94	3.2				70 - 130	20
n-Butylbenzene	ND	1.0	110	105	4.7				70 - 130	20
n-Propylbenzene	ND	1.0	109	102	6.6				70 - 130	20
o-Xylene	ND	1.0	101	98	3.0				70 - 130	20
p-Isopropyltoluene	ND	1.0	107	102	4.8				70 - 130	20

SDG I.D.: GCS32536

70 - 130

20

% % Blk LCS LCSD LCS MSMSD RPD MS Rec Blank RL RPD RPD % % % % Limits Limits Parameter sec-Butylbenzene ND 1.0 108 102 5.7 70 - 130 20 ND 97 70 - 130 20 Styrene 1.0 96 1.0 tert-amyl methyl ether ND 79 93 70 - 130 20 1.0 16.3 tert-Butylbenzene ND 1.0 108 102 5.7 70 - 130 20 Tetrachloroethene ND 1.0 99 96 3.1 70 - 130 20 Tetrahydrofuran (THF) ND 2.5 74 91 20.6 70 - 130 20 Toluene ND 1.0 99 98 1.0 70 - 130 20 ND 99 1.0 102 3.0 70 - 130 trans-1,2-Dichloroethene 20 trans-1,3-Dichloropropene ND 0.40 84 92 9.1 70 - 130 20 trans-1,4-dichloro-2-butene ND 5.0 83 91 9.2 70 - 130 20 Trichloroethene ND 1.0 101 97 4.0 70 - 130 20 ND 94 Trichlorofluoromethane 1.0 100 6.2 70 - 130 20 Trichlorotrifluoroethane ND 1.0 90 87 3.4 70 - 130 20 ND 1.0 Vinyl chloride 109 103 5.7 70 - 130 20 % 1,2-dichlorobenzene-d4 93 % 96 99 3.1 70 - 130 20 % Bromofluorobenzene 99 % 97 100 3.0 70 - 130 20 % Dibromofluoromethane 89 % 81 86 6.0 70 - 130 20

98

101

3.0

A LCS and LCS Duplicate were performed instead of a matrix spike and matrix spike duplicate.

%

Additional 8260 criteria: 10% of LCS/LCSD compounds can be outside of acceptance criteria as long as recovery is 40-160%.

QA/QC Batch 764378 (ug/L), QC Sample No: CS32769 (CS32537, CS32538)

97

Volatiles - Ground Water

% Toluene-d8

Comment:

Volutiloo Orouna Water								
1,1,1,2-Tetrachloroethane	ND	1.0	93	100	7.3	70 - 130	20	
1,1,1-Trichloroethane	ND	1.0	93	95	2.1	70 - 130	20	
1,1,2,2-Tetrachloroethane	ND	0.50	102	110	7.5	70 - 130	20	
1,1,2-Trichloroethane	ND	1.0	89	104	15.5	70 - 130	20	
1,1-Dichloroethane	ND	1.0	98	102	4.0	70 - 130	20	
1,1-Dichloroethene	ND	1.0	96	95	1.0	70 - 130	20	
1,1-Dichloropropene	ND	1.0	103	111	7.5	70 - 130	20	
1,2,3-Trichlorobenzene	ND	1.0	97	105	7.9	70 - 130	20	
1,2,3-Trichloropropane	ND	1.0	100	110	9.5	70 - 130	20	
1,2,4-Trichlorobenzene	ND	1.0	100	106	5.8	70 - 130	20	
1,2,4-Trimethylbenzene	ND	1.0	109	111	1.8	70 - 130	20	
1,2-Dibromo-3-chloropropane	ND	1.0	100	104	3.9	70 - 130	20	
1,2-Dibromoethane	ND	1.0	98	106	7.8	70 - 130	20	
1,2-Dichlorobenzene	ND	1.0	102	108	5.7	70 - 130	20	
1,2-Dichloroethane	ND	1.0	94	107	12.9	70 - 130	20	
1,2-Dichloropropane	ND	1.0	94	107	12.9	70 - 130	20	
1,3,5-Trimethylbenzene	ND	1.0	109	111	1.8	70 - 130	20	
1,3-Dichlorobenzene	ND	1.0	103	107	3.8	70 - 130	20	
1,3-Dichloropropane	ND	1.0	99	107	7.8	70 - 130	20	
1,4-Dichlorobenzene	ND	1.0	104	108	3.8	70 - 130	20	
1,4-dioxane	ND	100	99	104	4.9	70 - 130	20	
2,2-Dichloropropane	ND	1.0	100	100	0.0	70 - 130	20	
2-Chlorotoluene	ND	1.0	109	108	0.9	70 - 130	20	
2-Hexanone	ND	5.0	90	104	14.4	70 - 130	20	
2-Isopropyltoluene	ND	1.0	110	113	2.7	70 - 130	20	
4-Chlorotoluene	ND	1.0	104	105	1.0	70 - 130	20	
4-Methyl-2-pentanone	ND	5.0	79	101	24.4	70 - 130	20	r
Acetone	ND	5.0	83	90	8.1	70 - 130	20	

SDG I.D.: GCS32536

Daramatar	Blank	Blk RI	LCS %	LCSD %	LCS RPD	MS %	MSD %	MS RPD	% Rec Limits	% RPD Limits
Parameter						,,,	,,,	5		
Acrylonitrile	ND	5.0	80	91	12.9				70 - 130	20
Benzene	ND	0.70	101	110	8.5				70 - 130	20
Bromobenzene	ND	1.0	104	107	2.8				70 - 130	20
Bromochloromethane	ND	1.0	86	94	8.9				70 - 130	20
Bromodichloromethane	ND	0.50	90	102	12.5				70 - 130	20
Bromoform Bromomethane	ND	1.0 1.0	79 90	89 97	11.9 7.5				70 - 130 70 - 130	20
Carbon Disulfide	ND	1.0	90 98	97 99	7.5 1.0					20
Carbon Distillide Carbon tetrachloride	ND	1.0	98 92	99 92					70 - 130 70 - 130	20 20
Chlorobenzene	ND ND	1.0	100	103	0.0 3.0				70 - 130	20
Chloroethane			111	112						
	ND	1.0 1.0	94	98	0.9				70 - 130	20
Chloroform Chloromethane	ND	1.0	94 107	98 107	4.2				70 - 130	20
	ND		99		0.0				70 - 130	20
cis-1,2-Dichloroethene	ND	1.0		103	4.0				70 - 130	20
cis-1,3-Dichloropropene	ND	0.40	89	102	13.6				70 - 130	20
Dibromochloromethane	ND	0.50	93	102	9.2				70 - 130	20
Dibromomethane	ND	1.0	90	105	15.4				70 - 130	20
Dichlorodifluoromethane	ND	1.0	109	110	0.9				70 - 130	20
Ethyl ether	ND	1.0	86	98	13.0				70 - 130	20
Ethyl tert-butyl ether	ND	1.0	89	97	8.6				70 - 130	20
Ethylbenzene	ND	1.0	103	104	1.0				70 - 130	20
Hexachlorobutadiene	ND	0.40	95	101	6.1				70 - 130	20
Isopropylbenzene	ND	1.0	110	110	0.0				70 - 130	20
m&p-Xylene	ND	1.0	103	104	1.0				70 - 130	20
Methyl ethyl ketone	ND	5.0	78	90	14.3				70 - 130	20
Methyl t-butyl ether (MTBE)	ND	1.0	84	94	11.2				70 - 130	20
Methylene chloride	ND	1.0	91	97	6.4				70 - 130	20
Naphthalene	ND	1.0	102	111	8.5				70 - 130	20
n-Butylbenzene	ND	1.0	111	115	3.5				70 - 130	20
n-Propylbenzene	ND	1.0	111	109	1.8				70 - 130	20
o-Xylene	ND	1.0	103	105	1.9				70 - 130	20
p-Isopropyltoluene	ND	1.0	108	112	3.6				70 - 130	20
sec-Butylbenzene	ND	1.0	110	112	1.8				70 - 130	20
Styrene	ND	1.0	102	106	3.8				70 - 130	20
tert-amyl methyl ether	ND	1.0	87	103	16.8				70 - 130	20
tert-Butylbenzene	ND	1.0	109	109	0.0				70 - 130	20
Tetrachloroethene	ND	1.0	95	99	4.1				70 - 130	20
Tetrahydrofuran (THF)	ND	2.5	86	97	12.0				70 - 130	20
Toluene	ND	1.0	95	103	8.1				70 - 130	20
trans-1,2-Dichloroethene	ND	1.0	97	97	0.0				70 - 130	20
trans-1,3-Dichloropropene	ND	0.40	86	99	14.1				70 - 130	20
trans-1,4-dichloro-2-butene	ND	5.0	83	91	9.2				70 - 130	20
Trichloroethene	ND	1.0	100	101	1.0				70 - 130	20
Trichlorofluoromethane	ND	1.0	97	99	2.0				70 - 130	20
Trichlorotrifluoroethane	ND	1.0	91	94	3.2				70 - 130	20
Vinyl chloride	ND	1.0	102	103	1.0				70 - 130	20
% 1,2-dichlorobenzene-d4	94	%	98	100	2.0				70 - 130	20
% Bromofluorobenzene	99	%	100	100	0.0				70 - 130	20
% Dibromofluoromethane	90	%	85	88	3.5				70 - 130	20
% Toluene-d8	95	%	95	100	5.1				70 - 130	20

% % Blk LCSD LCS RPD LCS MS MSD Rec Blank RL RPD % % % % RPD Limits Limits Parameter

Comment:

A LCS and LCS Duplicate were performed instead of a matrix spike and matrix spike duplicate.

Additional 8260 criteria: 10% of LCS/LCSD compounds can be outside of acceptance criteria as long as recovery is 40-160%.

QA/QC Batch 764364 (ug/L), QC Sample No: CS32847 (CS32536 (5X, 20X))

Volatiles - Ground Water

Ethylbenzene	ND	1.0	101	103	2.0	70 - 130	20
Naphthalene	ND	1.0	92	92	0.0	70 - 130	20
% 1,2-dichlorobenzene-d4	92	%	98	97	1.0	70 - 130	20
% Bromofluorobenzene	96	%	99	99	0.0	70 - 130	20
% Dibromofluoromethane	85	%	85	82	3.6	70 - 130	20
% Toluene-d8	87	%	94	93	1.1	70 - 130	20

Comment:

A LCS and LCS Duplicate were performed instead of a matrix spike and matrix spike duplicate.

Additional 8260 criteria: 10% of LCS/LCSD compounds can be outside of acceptance criteria as long as recovery is 40-160%.

r = This parameter is outside laboratory RPD specified recovery limits.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

RPD - Relative Percent DifferenceLCS - Laboratory Control Sample

LCSD - Laboratory Control Sample Duplicate

MS - Matrix Spike

MS Dup - Matrix Spike Duplicate

NC - No Criteria
Intf - Interference
(ISO) - Isotope Dilution

Phyllis/Shiller, Laboratory Director

SDG I.D.: GCS32536

December 31, 2024

Tuesday, December 31, 2024 Criteria: CT: GWP, SWP

Sample Criteria Exceedances Report GCS32536 - WSP

State:	CT		3332333 1131				RL	Analysis
SampNo	Acode	Phoenix Analyte	Criteria	Result	RL	Criteria	Criteria	Units
CS32536	\$8100CTSIMR	Benzo(ghi)perylene	CT / RSR GWPC (ug/l) / APS Organics	0.82	0.45	0.48	0.48	ug/L
CS32536	\$8100CTSIMR	Indeno(1,2,3-cd)pyrene	CT / RSR GWPC (ug/l) / APS Organics	0.79	0.09	0.1	0.1	ug/L
CS32536	\$8100CTSIMR	Dibenz(a,h)anthracene	CT / RSR GWPC (ug/l) / APS Organics	0.18	0.09	0.1	0.1	ug/L
CS32536	\$8100CTSIMR	Benzo(k)fluoranthene	CT / RSR GWPC (ug/l) / Semivolatiles	1.1	0.28	0.5	0.5	ug/L
CS32536	\$8100CTSIMR	Benzo(b)fluoranthene	CT / RSR GWPC (ug/l) / Semivolatiles	1.2	0.07	0.08	0.08	ug/L
CS32536	\$8100CTSIMR	Benzo(a)pyrene	CT / RSR GWPC (ug/l) / Semivolatiles	1.3	0.19	0.2	0.2	ug/L
CS32536	\$8100CTSIMR	Benz(a)anthracene	CT / RSR GWPC (ug/l) / Semivolatiles	1.9	0.05	0.06	0.06	ug/L
CS32536	\$8100CTSIMR	Phenanthrene	CT / RSR SWPC (ug/l) / APS Organics	23	0.05	14	14	ug/L
CS32536	\$8100CTSIMR	Chrysene	CT / RSR SWPC (ug/l) / APS Organics	1.6	0.47	0.54	0.54	ug/L
CS32536	\$8100CTSIMR	Indeno(1,2,3-cd)pyrene	CT / RSR SWPC (ug/l) / APS Organics	0.79	0.09	0.54	0.54	ug/L
CS32536	\$8100CTSIMR	Naphthalene	CT / RSR SWPC (ug/l) / APS Organics	240	0.47	210	210	ug/L
CS32536	\$8100CTSIMR	Benzo(a)pyrene	CT / RSR SWPC (ug/l) / Semivolatiles	1.3	0.19	0.3	0.3	ug/L
CS32536	\$8100CTSIMR	Benzo(b)fluoranthene	CT / RSR SWPC (ug/l) / Semivolatiles	1.2	0.07	0.3	0.3	ug/L
CS32536	\$8100CTSIMR		CT / RSR SWPC (ug/l) / Semivolatiles	23	0.05	14	14	ug/L
CS32536		Benz(a)anthracene	CT / RSR SWPC (ug/l) / Semivolatiles	1.9	0.05	0.3	0.3	ug/L
CS32536		Acenaphthylene	CT / RSR SWPC (ug/l) / Semivolatiles	1.3	0.28	0.3	0.3	ug/L
CS32536	\$8100CTSIMR	Benzo(k)fluoranthene	CT / RSR SWPC (ug/l) / Semivolatiles	1.1	0.28	0.3	0.3	ug/L
CS32536	\$8260GWR	1,2-Dibromo-3-chloropropane	CT / RSR GWPC (ug/l) / APS Organics	ND	0.50	0.2	0.2	ug/L
CS32536	\$8260GWR	Naphthalene	CT / RSR GWPC (ug/l) / Semivolatiles	440	20	280	280	ug/L
CS32536	\$8260GWR	1,2-Dibromoethane	CT / RSR GWPC (ug/l) / Volatiles	ND	0.25	0.05	0.05	ug/L
CS32536	\$8260GWR	Benzene	CT / RSR GWPC (ug/l) / Volatiles	16	0.70	1	1	ug/L
CS32536	\$8260GWR	Naphthalene	CT / RSR SWPC (ug/l) / APS Organics	440	20	210	210	ug/L
CS32536	\$ETPH_WMR	Ext. Petroleum H.C. (C9-C36)	CT / RSR GWPC (ug/l) / Pest/PCB/TPH	1.6	0.076	0.25	0.25	mg/L
CS32536	\$ETPH_WMR	Ext. Petroleum H.C. (C9-C36)	CT / RSR SWPC (ug/l) / APS Organics	1.6	0.076	0.25	0.25	mg/L
CS32536	\$RCPADD-WM	1,4-Dioxane	CT / RSR GWPC (ug/l) / APS Organics	ND	40	3	3	ug/L
CS32536	AS-WM	Arsenic	CT / RSR SWPC (ug/l) / Inorganics	0.008	0.004	0.004	0.004	mg/L
CS32536	PB-WM	Lead	CT / RSR GWPC (ug/l) / Inorganics	0.060	0.001	0.015	0.015	mg/L
CS32536	PB-WM	Lead	CT / RSR SWPC (ug/l) / Inorganics	0.060	0.001	0.013	0.013	mg/L
CS32537	\$8260GWR	1,2-Dibromo-3-chloropropane	CT / RSR GWPC (ug/l) / APS Organics	ND	0.50	0.2	0.2	ug/L
CS32537	\$8260GWR	1,2-Dibromoethane	CT / RSR GWPC (ug/l) / Volatiles	ND	0.25	0.05	0.05	ug/L
CS32537	\$RCPADD-WM	1,4-Dioxane	CT / RSR GWPC (ug/l) / APS Organics	ND	40	3	3	ug/L
CS32538	\$8260GWR	1,2-Dibromo-3-chloropropane	CT / RSR GWPC (ug/l) / APS Organics	ND	0.50	0.2	0.2	ug/L
CS32538	\$8260GWR	1,2-Dibromoethane	CT / RSR GWPC (ug/l) / Volatiles	ND	0.25	0.05	0.05	ug/L
CS32538	\$RCPADD-WM	1,4-Dioxane	CT / RSR GWPC (ug/l) / APS Organics	ND	40	3	3	ug/L

Phoenix Laboratories does not assume responsibility for the data contained in this exceedance report. It is provided as an additional tool to identify requested criteria exceedences. All efforts are made to ensure the accuracy of the data (obtained from appropriate agencies). A lack of exceedence information does not necessarily suggest conformance to the criteria. It is ultimately the site professional's responsibility to determine appropriate compliance.

Bureau of Water Protection and Land Reuse Remediation Division

REASONABLE CONFIDENCE PROTOCOL LABORATORY ANALYSIS QA/QC CERTIFICATION FORM

	ory Name Environmental Labs, Inc.	Client Name WSP USA							
Project BTP	Location	Project No.							
Samplin 12/19/2	g Date(s) 2024	Laboratory Sample ID(s): CS32536-CS32538							
LIST RO	P METHODS USED (e.g., 8260,8270, etc.) 6010, 7.	470/7471, 8260, 8270, ETPH, 9010/9012							
1	For each analytical method referenced in this laborato QA/QC performance criteria followed, including the refalling outside of acceptable guidelines, as specified in Reasonable Confidence Protocol documents?	quirement to explain any criteria	✓ Yes □ No						
1A	ime requirements met?	✓ Yes □ No							
1B	☐ Yes ☐ No ☑ NA								
2	✓ Yes □ No								
3	✓ Yes □ No □ NA								
4	Were all QA/QC performance criteria specified in the Racheived? See Sections: Cyanide Narration, VOA Narra		☐ Yes 🗹 No						
5	Were reporting limits / limits of quantitation specified	or referenced on the chain-of-custody?	✓ Yes □ No						
5a	Were these reporting limits / limits of quantitation me	t?	☐ Yes ✓ No						
6	For each analytical method referenced in this laborato reported for all constituents identified in the method-s Reasonable Confidence Protocol documents?		☐ Yes ☑ No						
7	Are project-specific matrix spikes and laboratory duplic applicable RCPs?	cates included in this data set for	✓ Yes □ No						
provide	Notes: For all questions to which the response was "No" (with the exception of question #7), additional information must be provided in an attached narrative. If the answer to question #1, #1A, or #1B is "No", the data package does not meet the requirements for "Reasonable Confidence." This form may not be altered, and all questions must be answered.								
upon	, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete.								
Autho	rized Signature: <i>Ethan Lee</i>	Position: Project Manager							
	d Name: Ethan Lee	Date: Tuesday, December 31, 2024							
Name	lame of Laboratory Phoenix Environmental Laboratory, Inc.								

This certification form is to be used for RCP methods only.

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

RCP Certification Report

December 31, 2024 SDG I.D.: GCS32536

SDG Comments

Metals Analysis:

The client requested a shorter list of elements than the 6010 RCP list. Only the RCRA 8 Metals are reported as requested on the chain of custody.

8270 Semi-volatile Organics:

The client requested a short list for 8270 RCP Semivolatile. Only the PAH constituents are reported as requested on the chain-of-custody.

Volatile 8260 analysis:

1,2-Dibromoethane and 1,2-Dibromo-3-chloropropane do not meet GWP criteria, these compounds are analyzed by GC/ECD to achieve this criteria.

Volatile 8260 analysis:

1,4-Dioxane does not meet the GWP. This compound is analyzed by method 522 or 8270SIM to achieve this criteria.

Cyanide Narration

Were all QA/QC performance criteria specified in the Reasonable Confidence Protocol documents achieved? No.

QC Batch 763917 (Samples: CS32536, CS32537, CS32538): -----

The MS and/or the MSD recovery is above the upper range, therefore a slight high bias is possible. (Total Cyanide)

Instrument:

LACHAT 12/24/24-1

Christine Luckhoo, Chemist 12/24/24

CS32536, CS32537, CS32538

The samples were distilled in accordance with the method.

The initial calibration met criteria.

The calibration check standards (ICV,CCV) met criteria.

The initial and continuing calibration blanks (ICB,CCB) met criteria.

The method blank, laboratory control sample (LCS), and matrix spike (MS) were distilled with the samples.

QC (Site Specific):

Batch 763917 (CS32537)

CS32536, CS32537, CS32538

All LCS recoveries were within 90 - 110 with the following exceptions: None.

All LCSD recoveries were within 90 - 110 with the following exceptions: None.

All LCS/LCSD RPDs were less than 20% with the following exceptions: None.

All MS recoveries were within 90 - 110 with the following exceptions: Total Cyanide(111%)

A matrix effect is suspected when a MS/MSD recovery is outside of criteria. No further action is required if LCS/LCSD compounds are within criteria.

Additional: MS acceptance range is 75-125%.

ETPH Narration

Were all QA/QC performance criteria specified in the Reasonable Confidence Protocol documents achieved? Yes.

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

RCP Certification Report

December 31, 2024 SDG I.D.: GCS32536

ETPH Narration

Instrument:

AU-XL2 12/24/24-1 Jeff Bucko, Chemist 12/24/24

CS32536 (1X), CS32537 (1X), CS32538 (1X)

The initial calibration (ETPHO15I) RSD for the compound list was less than 30% except for the following compounds: None. As per section 7.2.3, a discrimination check standard was run (D24A003_1) and contained the following outliers: None. The continuing calibration %D for the compound list was less than 30% except for the following compounds:None.

QC (Batch Specific):

Batch 763916 (CS31672)

CS32536, CS32537, CS32538

All LCS recoveries were within 60 - 120 with the following exceptions: None.

All LCSD recoveries were within 60 - 120 with the following exceptions: None.

All LCS/LCSD RPDs were less than 20% with the following exceptions: None.

A LCS and LCS Duplicate were performed instead of a matrix spike and matrix spike duplicate.

Additional surrogate criteria: LCS acceptance range is 60-120% MS acceptance range 50-150%. The ETPH/DRO LCS has been normalized based on the alkane calibration.

Mercury Narration

Were all QA/QC performance criteria specified in the analytical method achieved? Yes.

Instrument:

MERLIN 12/20/24 08:06 Zade-Anne Taylor, Chemist 12/20/24

CS32536, CS32537, CS32538

The initial calibration met criteria and the linear range is defined daily by the calibration range.

The Low-Level Calibration Verification (LLCV) met criteria.

The following Initial Calibration Verification (ICV) compounds did not meet criteria: None.

The following Initial Calibration Blank (ICB) compounds did not meet criteria: None.

The following Continuing Calibration Verification (CCV) compounds did not meet criteria: None.

The following Continuing Calibration Blank (CCB) compounds did not meet criteria: None.

QC (Batch Specific):

Batch 763523 (CS31989)

CS32536, CS32537, CS32538

All LCS recoveries were within 80 - 120 with the following exceptions: None.

Additional Mercury Criteria: LCS acceptance range is 80-120% for aqueous and for soils the acceptance range is set by vendor limits. MS acceptance range is 75-125% for aqueous and 80-120% for soils.

ICP Metals Narration

Were all QA/QC performance criteria specified in the analytical method achieved? Yes.

Instrument:

ARCOS-4 12/26/24 11:14

Cindy Pearce, Chemist 12/26/24

CS32536, CS32537, CS32538

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Certification Report

December 31, 2024 SDG I.D.: GCS32536

ICP Metals Narration

The initial calibration met criteria and the linear range is defined daily by the calibration range.

The Low-Level Calibration Verification (LLCV) met criteria.

The following Initial Calibration Verification (ICV) compounds did not meet criteria: None.

The following Initial Calibration Blank (ICB) compounds did not meet criteria: None.

The following Spectral Interference Check compounds did not meet criteria: None.

The following Continuing Calibration Verification (CCV) compounds did not meet criteria: None.

The following Continuing Calibration Blank (CCB) compounds did not meet criteria: None.

QC (Batch Specific):

Batch 764108 (CS32662)

CS32536, CS32537, CS32538

All LCS recoveries were within 80 - 120 with the following exceptions: None.

All LCSD recoveries were within 80 - 120 with the following exceptions: None.

All LCS/LCSD RPDs were less than 20% with the following exceptions: None.

Additional Criteria: LCS acceptance range is 80-120% for aqueous and for soils the acceptance range is set by vendor limits. MS acceptance range 75-125%.

SVOA Narration

Were all QA/QC performance criteria specified in the Reasonable Confidence Protocol documents achieved? Yes.

Instrument:

CHEM22 12/27/24-1

Matt Richard, Chemist 12/27/24

CS32536 (1X, 5X)

Initial Calibration Evaluation (CHEM22/22_SVFULL_1220):

100% of target compounds met criteria.

The following compounds had %RSDs >20%: None.

The following compounds did not meet recommended response factors: None.

Continuing Calibration Verification (CHEM22/1227_03-22_SVFULL_1220):

Internal standard areas were within 50 to 200% of the initial calibration with the following exceptions: None.

98% of target compounds met criteria.

The following compounds did not meet % deviation criteria: None.

The following compounds did not meet maximum % deviations: None.

The following compounds did not meet recommended response factors: None.

QC (Batch Specific):

Batch 764116 (CS33408)

CS32536, CS32537, CS32538

All LCS recoveries were within 30 - 130 with the following exceptions: None.

All LCSD recoveries were within 30 - 130 with the following exceptions: None.

All LCS/LCSD RPDs were less than 20% with the following exceptions: None.

A LCS and LCS Duplicate were performed instead of a matrix spike and matrix spike duplicate.

Additional 8270 criteria:20% of compounds can be outside of acceptance criteria as long as recovery is at least 10%. (Acid surrogates acceptance range for aqueous samples: 15-110%, for soils 30-130%)

Additional 8270 criteria: 10% of compounds can be outside of acceptance criteria as long as recovery is at least 10%. (Acid

surrogates acceptance range for aqueous samples: 15-110%, for soils 30-130%)

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

RCP Certification Report

December 31, 2024 SDG I.D.: GCS32536

SVOA Narration

SVOASIM Narration

Were all QA/QC performance criteria specified in the Reasonable Confidence Protocol documents achieved? Yes.

Instrument:

CHEM33 12/26/24-1 Adam Werner, Chemist 12/26/24

CS32536 (1X), CS32537 (1X), CS32538 (1X)

Initial Calibration Evaluation (CHEM33/33_PAHSIM_1126):

100% of target compounds met criteria.

The following compounds had %RSDs >20%: None.

The following compounds did not meet recommended response factors: None.

Continuing Calibration Verification (CHEM33/1226_06-33_PAHSIM_1126):

Internal standard areas were within 50 to 200% of the initial calibration with the following exceptions: None.

100% of target compounds met criteria.

The following compounds did not meet % deviation criteria: None.

The following compounds did not meet maximum % deviations: None.

The following compounds did not meet recommended response factors: None.

QC (Batch Specific):

Batch 764116 (CS33408)

CS32536, CS32537, CS32538

All LCS recoveries were within 30 - 130 with the following exceptions: None.

All LCSD recoveries were within 30 - 130 with the following exceptions: None.

All LCS/LCSD RPDs were less than 20% with the following exceptions: None.

A LCS and LCS Duplicate were performed instead of a matrix spike and matrix spike duplicate.

Additional 8270 criteria: 20% of compounds can be outside of acceptance criteria as long as recovery is at least 10%. (Acid surrogates acceptance range for aqueous samples: 15-110%, for soils 30-130%)

VOA Narration

Were all QA/QC performance criteria specified in the Reasonable Confidence Protocol documents achieved? No.

QC Batch 763881 (Samples: CS32536): -----

The LCS/LCSD RPD exceeds the method criteria for one or more analytes, but these analytes were not reported in the sample(s) so no variability is suspected. (Tetrahydrofuran (THF))

QC Batch 764378 (Samples: CS32537, CS32538): -----

The LCS/LCSD RPD exceeds the method criteria for one or more analytes, but these analytes were not reported in the sample(s) so no variability is suspected. (4-Methyl-2-pentanone)

Instrument:

CHEM17 12/22/24-1

Harry Mullin, Chemist 12/22/24

CS32536 (1X)

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

RCP Certification Report

December 31, 2024 SDG I.D.: GCS32536

VOA Narration

Chem 17 is a 25ml purge instrument. The laboratory minimum response factor is set at 0.01 instead of 0.05 for the 25ml purge instruments.

EPA method 8260D Table 4 supports this approach.

Initial Calibration Evaluation (CHEM17/VT-121624):

99% of target compounds met criteria.

The following compounds had %RSDs >20%: Acrylonitrile 21% (20%)

The following compounds did not meet Table 4 recommended minimum response factors: 1,1,2-Trichloroethane 0.189 (0.2), 1,2-Dibromoethane 0.184 (0.2), Bromoform 0.094 (0.1)

Continuing Calibration Verification (CHEM17/1222 02-VT-121624):

Internal standard areas were within 50 to 200% of the initial calibration with the following exceptions: None.

99% of target compounds met criteria.

The following compounds did not meet % deviation criteria: 1,4-Dioxane 21%L (20%)

The following compounds did not meet maximum % deviations: None.

The following compounds did not meet Table 4 recommended minimum response factors: 1,1,2-Trichloroethane 0.182 (0.2), 1,2-

Dibromoethane 0.179 (0.2), Bromoform 0.079 (0.1), Tetrahydrofuran (THF) 0.049 (0.05)

CHEM17 12/23/24-1

Michael Hahn, Chemist 12/23/24

CS32536 (5X, 20X)

Chem 17 is a 25ml purge instrument. The laboratory minimum response factor is set at 0.01 instead of 0.05 for the 25ml purge instruments.

EPA method 8260D Table 4 supports this approach.

Initial Calibration Evaluation (CHEM17/VT-121624):

99% of target compounds met criteria.

The following compounds had %RSDs >20%: None.

The following compounds did not meet Table 4 recommended minimum response factors: None.

Continuing Calibration Verification (CHEM17/1223_02-VT-121624):

Internal standard areas were within 50 to 200% of the initial calibration with the following exceptions: None.

95% of target compounds met criteria.

The following compounds did not meet % deviation criteria: None.

The following compounds did not meet maximum % deviations: None.

The following compounds did not meet Table 4 recommended minimum response factors: None.

CHEM17 12/23/24-2

Michael Hahn, Chemist 12/23/24

CS32537 (1X), CS32538 (1X)

Chem 17 is a 25ml purge instrument. The laboratory minimum response factor is set at 0.01 instead of 0.05 for the 25ml purge instruments.

EPA method 8260D Table 4 supports this approach.

Initial Calibration Evaluation (CHEM17/VT-121624):

99% of target compounds met criteria.

The following compounds had %RSDs >20%: Acrylonitrile 21% (20%)

The following compounds did not meet Table 4 recommended minimum response factors: 1,1,2-Trichloroethane 0.189 (0.2), 1,2-Dibromoethane 0.184 (0.2), Bromoform 0.094 (0.1)

Continuing Calibration Verification (CHEM17/1223_28-VT-121624):

Internal standard areas were within 50 to 200% of the initial calibration with the following exceptions: None.

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

RCP Certification Report

December 31, 2024 SDG I.D.: GCS32536

VOA Narration

80% of target compounds met criteria.

The following compounds did not meet % deviation criteria: 1,1,2-Trichloroethane 23%L (20%), 4-Methyl-2-pentanone 30%L (20%), Acetone 24%L (20%), Acrylonitrile 24%L (20%), Bromochloromethane 22%L (20%), Bromodichloromethane 22%L (20%), Bromodichloromethane 22%L (20%), Bromoform 29%L (20%), Bromomethane 26%L (20%), cis-1,3-Dichloropropene 22%L (20%), Dibromomethane 22%L (20%), Methyl ethyl ketone 31%L (20%), Methyl t-butyl ether (MTBE) 22%L (20%), tert amyl methyl ether 24%L (20%), Tetrahydrofuran (THF) 22%L (20%), trans-1,3-Dichloropropene 26%L (20%), trans-1,4-dichloro-2-butene 26%L (20%)

The following compounds did not meet maximum % deviations: None.

The following compounds did not meet Table 4 recommended minimum response factors: 1,1,2-Trichloroethane 0.145 (0.2), 1,2-Dibromoethane 0.168 (0.2), Bromoform 0.067 (0.1), Dibromoehloromethane 0.193 (0.2), Tetrahydrofuran (THF) 0.043 (0.05), trans-1,3-Dichloropropene 0.263 (0.3)

QC (Batch Specific):

Batch 763881 (CS32688) CHEM17 12/22/2024-1

CS32536(1X)

All LCS recoveries were within 70 - 130 with the following exceptions: None.

All LCSD recoveries were within 70 - 130 with the following exceptions: None.

All LCS/LCSD RPDs were less than 20% with the following exceptions: Tetrahydrofuran (THF)(20.6%)

A LCS and LCS Duplicate were performed instead of a matrix spike and matrix spike duplicate.

Additional 8260 criteria: 10% of LCS/LCSD compounds can be outside of acceptance criteria as long as recovery is 40-160%.

Batch 764364 (CS32847) CHEM17 12/23/2024-1

CS32536(5X, 20X)

All LCS recoveries were within 70 - 130 with the following exceptions: None.

All LCSD recoveries were within 70 - 130 with the following exceptions: None.

All LCS/LCSD RPDs were less than 20% with the following exceptions: None.

A LCS and LCS Duplicate were performed instead of a matrix spike and matrix spike duplicate.

Additional 8260 criteria: 10% of LCS/LCSD compounds can be outside of acceptance criteria as long as recovery is 40-160%.

Batch 764378 (CS32769) CHEM17 12/23/2024-2

CS32537(1X), CS32538(1X)

All LCS recoveries were within 70 - 130 with the following exceptions: None.

All LCSD recoveries were within 70 - 130 with the following exceptions: None.

All LCS/LCSD RPDs were less than 20% with the following exceptions: 4-Methyl-2-pentanone(24.4%)

A LCS and LCS Duplicate were performed instead of a matrix spike and matrix spike duplicate.

Additional 8260 criteria: 10% of LCS/LCSD compounds can be outside of acceptance criteria as long as recovery is 40-160%.

Temperature Narration

The samples were received at 1.4C with cooling initiated.

(Note acceptance criteria for relevant matrices is above freezing up to 6°C)

اا گۇگى

Coolant IPK